1,166 research outputs found

    Orientational and induced contributions to the depolarized Rayleigh spectra of liquid and supercooled ortho-terphenyl

    Full text link
    The depolarized light scattering spectra of the glass forming liquid ortho-terphenyl have been calculated in the low frequency region using molecular dynamics simulation. Realistic system's configurations are produced by using a recent flexible molecular model and combined with two limiting polarizability schemes, both of them using the dipole-induced-dipole contributions at first and second order. The calculated Raman spectral shape are in good agreement with the experimental results in a large temperature range. The analysis of the different contributions to the Raman spectra emphasizes that the orientational and the collision-induced (translational) terms lie on the same time-scale and are of comparable intensity. Moreover, the cross terms are always found to be an important contribution to the scattering intensity.Comment: RevTeX4, 7 pages, 8 eps figure

    Molecular dynamics simulation study of the high frequency sound waves in the fragile glass former ortho-terphenyl

    Full text link
    Using a realistic flexible molecule model of the fragile glass former orthoterphenyl, we calculate via molecular dynamics simulation the collective dynamic structure factor, recently measured in this system by Inelastic X-ray Scattering. The comparison of the simulated and measured dynamic structure factor, and the study of its properties in an extended momentum, frequency and temperature range allows: i) to conclude that the utilized molecular model gives rise to a dynamic structure factor in agreement with the experimental data, for those thermodynamic states and momentum values where the latter are available; ii) to confirm the existence of a slope discontinuity on the T-dependence of the sound velocity that, at finite Q, takes place at a temperature T_x higher than the calorimetric glass transition temperature T_g; iii) to find that the values of T_x is Q-dependent and that its vanishing Q limit is consistent with T_g. The latter finding is interpreted within the framework of the current description of the dynamics of supercooled liquids in terms of exploration of the potential energy landscape.Comment: RevTex, 9 pages, 10 eps figure

    High frequency acoustic modes in liquid gallium at the melting point

    Full text link
    The microscopic dynamics in liquid gallium (l-Ga) at melting (T=315 K) has been studied by inelastic x-ray scattering. We demonstrate the existence of collective acoustic-like modes up to wave-vectors above one half of the first maximum of the static structure factor, at variance with earlier results from inelastic neutron scattering data [F.J. Bermejo et al. Phys. Rev. E 49, 3133 (1994)]. Despite the structural (an extremely rich polymorphism and rather complex phase diagram) and electronic (mixed valence) peculiarity of l-Ga, its collective dynamics is strikingly similar to the one of Van der Walls and alkali metals liquids. This result speaks in favor of the universality of the short time dynamics in monatomic liquids rather than of system-specific dynamics.Comment: LaTex format, 11 pages, 4 EncapsulatedPostScript figure

    ORIGIN OF LIGHT SCATTERING FROM DISORDERED SYSTEMS

    Full text link
    Anelastic light scattering is computed numerically for model disordered systems (linear chains and 2-dimensional site and bond percolators), with and without electrical disorder. A detailed analysis of the vibrational modes and of their Raman activity evidences that two extreme mechanisms for scattering may be singled out. One of these resembles scattering from finite size systems, while the other mechanisms originates from spatial fluctuations of the polarizability and is such that modes in even small frequency intervals may have very different Raman activities. As a consequence, the average coupling coefficient C(ω)C(\omega) is the variance of a zero-average quantity. Our analysis shows that for both linear chains and 2-dimensional percolators the second mechanism dominates over the first, and therefore Raman scattering from disordered systems is essentially due to spatial fluctuations.Comment: 12 pages, Latex, 7 figures available on request

    Frustration and sound attenuation in structural glasses

    Full text link
    Three classes of harmonic disorder systems (Lennard-Jones like glasses, percolators above threshold, and spring disordered lattices) have been numerically investigated in order to clarify the effect of different types of disorder on the mechanism of high frequency sound attenuation. We introduce the concept of frustration in structural glasses as a measure of the internal stress, and find a strong correlation between the degree of frustration and the exponent alpha that characterizes the momentum dependence of the sound attenuation Gamma(Q)Gamma(Q)\simeqQαQ^\alpha. In particular, alpha decreases from about d+1 in low-frustration systems (where d is the spectral dimension), to about 2 for high frustration systems like the realistic glasses examined.Comment: Revtex, 4 pages including 4 figure

    General features of the energy landscape in Lennard-Jones like model liquids

    Full text link
    Features of the energy landscape sampled by supercooled liquids are numerically analyzed for several Lennard-Jones like model systems. The properties of quasisaddles (minima of the square gradient of potential energy W=|grad V|^2), are shown to have a direct relationship with the dynamical behavior, confirming that the quasisaddle order extrapolates to zero at the mode-coupling temperature T_MCT. The same result is obtained either analyzing all the minima of W or the saddles (absolute minima of W), supporting the conjectured similarity between quasisaddles and saddles, as far as the temperature dependence of the properties influencing the slow dynamics is concerned. We find evidence of universality in the shape of the landscape: plots for different systems superimpose into master curves, once energies and temperatures are scaled by T_MCT. This allows to establish a quantitative relationship between T_MCT and potential energy barriers for LJ-like systems, and suggests a possible generalization to different model liquids.Comment: 8 pages, 5 figure

    High frequency dynamics in liquid nickel: an IXS study

    Full text link
    Owing to their large relatively thermal conductivity, peculiar, non-hydrodynamic features are expected to characterize the acoustic-like excitations observed in liquid metals. We report here an experimental study of collective modes in molten nickel, a case of exceptional geophysical interest for its relevance in Earth interior science. Our result shed light on previously reported contrasting evidences: in the explored energy-momentum region no deviation from the generalized hydrodynamic picture describing non conductive fluids are observed. Implications for high frequency transport properties in metallic fluids are discussed.Comment: 6 pages, 4 figures, to appear in "Journal of Chemical Physics

    Landscapes and Fragilities

    Full text link
    The concept of fragility provides a possibility to rank different supercooled liquids on the basis of the temperature dependence of dynamic and/or thermodynamic quantities. We recall here the definitions of kinetic and thermodynamic fragility proposed in the last years and discuss their interrelations. At the same time we analyze some recently introduced models for the statistical properties of the potential energy landscape. Building on the Adam-Gibbs relation, which connects structural relaxation times to configurational entropy, we analyze the relation between statistical properties of the landscape and fragility. We call attention to the fact that the knowledge of number, energy depth and shape of the basins of the potential energy landscape may not be sufficient for predicting fragility. Finally, we discuss two different possibilities for generating strong behavior.Comment: 17 pages, 10 figures; accepted version, minor correction

    Topological Signature of First Order Phase Transitions

    Full text link
    We show that the presence and the location of first order phase transitions in a thermodynamic system can be deduced by the study of the topology of the potential energy function, V(q), without introducing any thermodynamic measure. In particular, we present the thermodynamics of an analytically solvable mean-field model with a k-body interaction which -depending on the value of k- displays no transition (k=1), second order (k=2) or first order (k>2) phase transition. This rich behavior is quantitatively retrieved by the investigation of a topological invariant, the Euler characteristic, of some submanifolds of the configuration space. Finally, we conjecture a direct link between the Euler characteristic and the thermodynamic entropy.Comment: 6 pages, 2 figure
    corecore