1,914 research outputs found

    Light diffusion and localization in 3D nonlinear disordered media

    Full text link
    Using a 3D Finite-Difference Time-Domain parallel code, we report on the linear and nonlinear propagation of light pulses in a disordered assembly of scatterers, whose spatial distribution is generated by a Molecular Dynamics code; refractive index dispersion is also taken into account. We calculate the static and dynamical diffusion constant of light, while considering a pulsed excitation. Our results are in quantitative agreement with reported experiments, also furnishing evidence of a non-exponential decay of the transmitted pulse in the linear regime and in the presence of localized modes. By using an high power excitation, we numerically demonstrate the ``modulational instability random laser'': at high peak input powers energy is transferred to localized states from the input pulse, via third-order nonlinearity and optical parametric amplification, and this process is signed by a power-dependent non-exponential time-decay of the transmitted pulse.Comment: 5 pages, 4 figures. Revised version with new figure 4 with localized state

    Quasi-saddles as relevant points of the potential energy surface in the dynamics of supercooled liquids

    Full text link
    The supercooled dynamics of a Lennard-Jones model liquid is numerically investigated studying relevant points of the potential energy surface, i.e. the minima of the square gradient of total potential energy VV. The main findings are: ({\it i}) the number of negative curvatures nn of these sampled points appears to extrapolate to zero at the mode coupling critical temperature TcT_c; ({\it ii}) the temperature behavior of n(T)n(T) has a close relationship with the temperature behavior of the diffusivity; ({\it iii}) the potential energy landscape shows an high regularity in the distances among the relevant points and in their energy location. Finally we discuss a model of the landscape, previously introduced by Madan and Keyes [J. Chem. Phys. {\bf 98}, 3342 (1993)], able to reproduce the previous findings.Comment: To be published in J. Chem. Phy

    Fabrication tolerant design of silicon nitride Kerr comb generators

    Get PDF
    We propose a solution to implement a simulation routine suitable for the design of fabrication-tolerant Kerr-comb generators by looking at the waveguides' geometry affected by the tolerance. The multiparameter-space analysis highlighted that while several waveguide cross-sections are suitable for the comb generation, they don't all provide the same safety buffer toward the fabrication variability. Thus, some designs are preferred to other suitable ones. This approach paves the way to high yield, scalable and fabrication-tolerant integrated Kerr comb generators (KCGs) manufactured in complementary metal-oxide-semiconductor (CMOS) foundries

    High frequency acoustic modes in liquid gallium at the melting point

    Full text link
    The microscopic dynamics in liquid gallium (l-Ga) at melting (T=315 K) has been studied by inelastic x-ray scattering. We demonstrate the existence of collective acoustic-like modes up to wave-vectors above one half of the first maximum of the static structure factor, at variance with earlier results from inelastic neutron scattering data [F.J. Bermejo et al. Phys. Rev. E 49, 3133 (1994)]. Despite the structural (an extremely rich polymorphism and rather complex phase diagram) and electronic (mixed valence) peculiarity of l-Ga, its collective dynamics is strikingly similar to the one of Van der Walls and alkali metals liquids. This result speaks in favor of the universality of the short time dynamics in monatomic liquids rather than of system-specific dynamics.Comment: LaTex format, 11 pages, 4 EncapsulatedPostScript figure

    Hard sphere-like dynamics in a non hard sphere liquid

    Full text link
    The collective dynamics of liquid Gallium close to the melting point has been studied using Inelastic X-ray Scattering to probe lengthscales smaller than the size of the first coordination shell. %(momentum transfers, QQ, >>15 nm−1^{-1}). Although the structural properties of this partially covalent liquid strongly deviate from a simple hard-sphere model, the dynamics, as reflected in the quasi-elastic scattering, are beautifully described within the framework of the extended heat mode approximation of Enskog's kinetic theory, analytically derived for a hard spheres system. The present work demonstrates the applicability of Enskog's theory to non hard- sphere and non simple liquids.Comment: 5 pages, 2 figures, accepted in Phys. Rev. Let

    Condensation in disordered lasers: theory, 3D+1 simulations and experiments

    Full text link
    The complex processes underlying the generation of a coherent-like emission from the multiple-scattering of photons and wave-localization in the presence of structural disorder are still mostly un-explored. Here we show that a single nonlinear Schroedinger equation, playing the role of the Schawlow-Townes law for standard lasers, quantitatively reproduces experimental results and three-dimensional time-domain parallel simulations of a colloidal laser system.Comment: 4 pages, 5 figure

    Inflammation, neurodegeneration and protein aggregation in the retina as ocular biomarkers for Alzheimer’s Disease in the 3xTg-AD mouse model

    Get PDF
    Alzheimer's disease (AD) is the most common cause of dementia in the elderly. In the pathogenesis of AD a pivotal role is played by two neurotoxic proteins that aggregate and accumulate in the central nervous system: amyloid beta and hyper-phosphorylated tau. Accumulation of extracellular amyloid beta plaques and intracellular hyper-phosphorylated tau tangles, and consequent neuronal loss begins 10-15 years before any cognitive impairment. In addition to cognitive and behavioral deficits, sensorial abnormalities have been described in AD patients and in some AD transgenic mouse models. Retina can be considered a simple model of the brain, as some pathological changes and therapeutic strategies from the brain may be observed or applicable to the retina. Here we propose new retinal biomarkers that could anticipate the AD diagnosis and help the beginning and the follow-up of possible future treatments. We analyzed retinal tissue of triple-transgenic AD mouse model (3xTg-AD) for the presence of pathological hallmarks during disease progression. We found the presence of amyloid beta plaques, tau tangles, neurodegeneration, and astrogliosis in the retinal ganglion cell layer of 3xTg-AD mice, already at pre-symptomatic stage. Moreover, retinal microglia in pre-symptomatic mice showed a ramified, anti-inflammatory phenotype which, during disease progression, switches to a pro-inflammatory, less ramified one, becoming neurotoxic. We hypothesize retina as a window through which monitor AD-related neurodegeneration process

    Competing interactions in arrested states of colloidal clays

    Full text link
    Using experiments, theory and simulations, we show that the arrested state observed in a colloidal clay at intermediate concentrations is stabilized by the screened Coulomb repulsion (Wigner glass). Dilution experiments allow us to distinguish this high-concentration disconnected state, which melts upon addition of water, from a low-concentration gel state, which does not melt. Theoretical modelling and simulations reproduce the measured Small Angle X-Ray Scattering static structure factors and confirm the long-range electrostatic nature of the arrested structure. These findings are attributed to the different timescales controlling the competing attractive and repulsive interactions.Comment: Accepted for publication in Physical Review Letter
    • …
    corecore