4,142 research outputs found

    Constructing Two Edge-Disjoint Hamiltonian Cycles in Locally Twisted Cubes

    Full text link
    The nn-dimensional hypercube network QnQ_n is one of the most popular interconnection networks since it has simple structure and is easy to implement. The nn-dimensional locally twisted cube, denoted by LTQnLTQ_n, an important variation of the hypercube, has the same number of nodes and the same number of connections per node as QnQ_n. One advantage of LTQnLTQ_n is that the diameter is only about half of the diameter of QnQ_n. Recently, some interesting properties of LTQnLTQ_n were investigated. In this paper, we construct two edge-disjoint Hamiltonian cycles in the locally twisted cube LTQnLTQ_n, for any integer nβ©Ύ4n\geqslant 4. The presence of two edge-disjoint Hamiltonian cycles provides an advantage when implementing algorithms that require a ring structure by allowing message traffic to be spread evenly across the locally twisted cube.Comment: 7 pages, 4 figure

    A Nonlinear Multigrid Steady-State Solver for Microflow

    Full text link
    We develop a nonlinear multigrid method to solve the steady state of microflow, which is modeled by the high order moment system derived recently for the steady-state Boltzmann equation with ES-BGK collision term. The solver adopts a symmetric Gauss-Seidel iterative scheme nested by a local Newton iteration on grid cell level as its smoother. Numerical examples show that the solver is insensitive to the parameters in the implementation thus is quite robust. It is demonstrated that expected efficiency improvement is achieved by the proposed method in comparison with the direct time-stepping scheme

    Numerical Regularized Moment Method of Arbitrary Order for Boltzmann-BGK Equation

    Full text link
    We introduce a numerical method for solving Grad's moment equations or regularized moment equations for arbitrary order of moments. In our algorithm, we do not need explicitly the moment equations. As an instead, we directly start from the Boltzmann equation and perform Grad's moment method \cite{Grad} and the regularization technique \cite{Struchtrup2003} numerically. We define a conservative projection operator and propose a fast implementation which makes it convenient to add up two distributions and provides more efficient flux calculations compared with the classic method using explicit expressions of flux functions. For the collision term, the BGK model is adopted so that the production step can be done trivially based on the Hermite expansion. Extensive numerical examples for one- and two-dimensional problems are presented. Convergence in moments can be validated by the numerical results for different number of moments.Comment: 33 pages, 13 figure
    • …
    corecore