18 research outputs found

    MXene nanomaterials in biomedicine: A bibliometric perspective

    Get PDF
    Purpose: MXene is two-dimensional (2D) nanomaterials that comprise transition metal carbides, nitrides, and carbonitrides. Their unique nanostructure attributes it a special role in medical applications. However, bibliometric studies have not been conducted in this field. Therefore, the aim of the present study was to conduct a bibliometric analysis to evaluate the global scientific output of MXene in biomedical research, explore the current situation of this field in the past years and predicte its research hotpots.Methods: We utilized visual analysis softwares Citespace and Bibliometrix to analyze all relevant documents published in the period of 2011–2022. The bibliometric records were obtained from the Web of Science Core Collection.Results: A total of 1,489 publications were analyzed in this study. We observed that China is the country with the largest number of publications, with Sichuan University being the institution with the highest number of publications in this field. The most publications on MXene medicine research in the past year were found primarily in journals about Chemistry/Materials/Physics. Moreover, ACS Applied Materials and Interfaces was found to be the most productive journal in this field. Co-cited references and keyword cluster analysis revealed that #antibacterial# and #photothermal therapy# are the research focus keyword and burst detection suggested that driven wearable electronics were newly-emergent research hot spots.Conclusion: Our bibliometric analysis indicates that research on MXene medical application remains an active field of study. At present, the research focus is on the application of MXene in the field of antibacterial taking advantage of its photothermal properties. In the future, wearable electronics is the research direction of MXene medical application

    miR-122-5p Inhibits the Proliferation, Invasion and Growth of Bile Duct Carcinoma Cells by Targeting ALDOA

    Get PDF
    Background/Aims: Bile duct cancer, although not among the most common tumors, still accounts for more and more worldwide deaths each year. By attempting to verify an overexpression of ALDOA in cholangiocarcinoma tissues and cells and explore the underlying molecular mechanism regulated by miR-122-5p, this study was designed to provide a potential molecular target in bile duct cancer treatment. Methods: Western blot and immunohistochemistry were performed to detect the ALDOA protein level in duct carcinoma tissues. The transfection efficiency was confirmed by western blot and/or RT-qPCR assay. The proliferation of bile duct carcinoma cells was determined by MTT and colony formation assay. The invasion ability of bile duct carcinoma cells was evaluated with Transwell invasion assay. Flow cytometry detected cell apoptosis of bile duct carcinoma cells. The miRNAs which modulate ALDOA were filtrated from bioinformatics software and clinical specimens. The target relationship was confirmed by dual luciferase reporter assay. Furthermore, a xenograft model was completed to verify the impact of miRNA on inhibition growth of bile duct carcinoma cells. Results: ALDOA was found up-regulated in bile duct carcinoma tissues and cells. Knockdown of ALDOA promoted the apoptosis of cells and inhibited the proliferation and invasion of bile duct carcinoma cells. Bioinformatics and clinical specimens indicated the negative correlation and targeted regulation between miR-122-5p and ALDOA. By down-regulating ALDOA, overexpression of miR-122-5p appeared to promote cell apoptosis and significantly inhibit cell proliferation, invasion in vitro and suppress the tumor growth in vivo. Conclusion: miR-122-5p inhibited proliferation and invasion of bile duct carcinoma cells and promoted cell apoptosis by targeting ALDOA expression

    A Fast and Accurate Spatial Target Snapping Method for 3D Scene Modeling and Mapping in Mobile Augmented Reality

    No full text
    High-performance spatial target snapping is an essential function in 3D scene modeling and mapping that is widely used in mobile augmented reality (MAR). Spatial data snapping in a MAR system must be quick and accurate, while real-time human–computer interaction and drawing smoothness must also be ensured. In this paper, we analyze the advantages and disadvantages of several spatial data snapping algorithms, such as the 2D computational geometry method and the absolute distance calculation method. To address the issues that existing algorithms do not adequately support 3D data snapping and real-time snapping of high data volumes, we present a new adaptive dynamic snapping algorithm based on the spatial and graphical characteristics of augmented reality (AR) data snapping. Finally, the algorithm is experimented with by an AR modeling system, including the evaluation of snapping efficiency and snapping accuracy. Through the experimental comparison, we found that the algorithm proposed in this paper is substantially improved in terms of shortening the snapping time, enhancing the snapping stability, and improving the snapping accuracy of vector points, lines, faces, bodies, etc. The snapping efficiency of the algorithm proposed in this paper is 1.6 times higher than that of the traditional algorithm on average, while the data acquisition accuracy based on the algorithm in this paper is more than 6 times higher than that of the traditional algorithm on average under the same conditions, and its data accuracy is improved from the decimeter level to the centimeter level

    Neoagaro-Oligosaccharides Ameliorate Chronic Restraint Stress-Induced Depression by Increasing 5-HT and BDNF in the Brain and Remodeling the Gut Microbiota of Mice

    No full text
    Neoagaro-oligosaccharides (NAOs) belong to the algae oligosaccharides. NAOs have been found to have diverse biological activities. However, the effects of NAOs on depression and their underlying mechanism have not been thoroughly studied. A chronic restraint stress (CRS)-induced C57BL/6J mouse model was used to assess the antidepressant effects of NAOs. Anxiety and depression behaviors were assessed by open field tests (OFT) and forced swimming tests (FST), while interleukin 18 (IL-18), 5-hydroxytryptamine (5-HT) and brain-derived neurotrophic factor (BDNF) were the molecular biomarkers of depression. Fecal microbiota transplantation (FMT) was performed. The results showed that NAO treatment significantly improved the body weight of depressed mice and reduced the central area time in the OFT and immobility time in the FST. NAO treatment decreased the levels of IL-18 in the serum and increased the levels of 5-HT in the serum and whole brain and of BDNF in the whole brain. NAO treatment mitigated the gut microbiota dysbiosis in the depressed mice and reversed the decreased levels of short-chain fatty acids (SCFAs) in the cecum of the depressed mice. FMT indicated that the gut microbiota is, indeed, linked to depression, which was reflected in the changes in weight gain and behaviors. In a word, NAOs effectively reversed the CRS-induced mice model of depression, which depended on the changes in the gut microbiota and SCFAs, as well as its modulation of 5-HT and BDNF

    Dexmedetomidine Attenuates LPS-Induced Monocyte-Endothelial Adherence via Inhibiting Cx43/PKC-α/NOX2/ROS Signaling Pathway in Monocytes

    No full text
    Dexmedetomidine is widely used for sedating patients in operation rooms or intensive care units. Its protective functions against oxidative stress, inflammation reaction, and apoptosis have been widely reported. In present study, we explored the effects of dexmedetomidine on monocyte-endothelial adherence. We built lipopolysaccharide- (LPS-) induced monocyte-endothelial adherence models with U937 monocytes and human umbilical vein endothelial cells (HUVECs) and observed the effects of dexmedetomidine on U937-HUVEC adhesion. Specific siRNA was designed to knock-down Connexin43 (Cx43) expression in U937 monocytes. Gö6976, GSK2795039, and NAC were used to inhibit PKC-α, NOX2, and ROS, respectively. Then, we detected whether dexmedetomidine could downregulate Cx43 expression and its downstream PKC-α/NOX2/ROS signaling pathway activation and ultimately result in the decrease of U937-HUVEC adhesion. The results showed that dexmedetomidine, at its clinically relevant concentrations (0.1 nM and 1 nM), could inhibit adhesion of molecule expression (VLA-4 and LFA-1) and U937-HUVEC adhesion. Simultaneously, it also attenuated Cx43 expression in U937 monocytes. With the downregulation of Cx43 expression, the activity of PKC-α and its related NOX2/ROS signaling pathway were reduced. Inhibiting PKC-α/NOX2/ROS signaling pathway with Gö6976, GSK2795039, and NAC, respectively, VLA-4, LFA-1 expression, and U937-HUVEC adhesion were all decreased. In summary, we concluded that dexmedetomidine, at its clinically relevant concentrations (0.1 nM and 1 nM), decreased Cx43 expression in U937 monocytes and PKC-α associated with carboxyl-terminal domain of Cx43 protein. With the downregulation of PKC-α, the NOX2/ROS signaling pathway was inhibited, resulting in the decrease of VLA-4 and LFA-1 expression. Ultimately, U937-HUVEC adhesion was reduced

    Dexmedetomidine Attenuates Monocyte-Endothelial Adherence via Inhibiting Connexin43 on Vascular Endothelial Cells

    No full text
    Current studies have identified the multifaceted protective functions of dexmedetomidine on multiple organs. For the first time, we clarify effects of dexmedetomidine on monocyte-endothelial adherence and whether its underlying mechanism is relative to connexin43 (Cx43), a key factor regulating monocyte-endothelial adherence. U937 monocytes and human umbilical vein endothelial cells (HUVECs) were used to explore monocyte-endothelial adherence. Two special siRNAs were designed to knock down Cx43 expression on HUVECs. U937-HUVEC adhesion, adhesion-related molecules, and the activation of the MAPK (p-ERK1/2, p-p38, and p-JNK1/2) signaling pathway were detected. Dexmedetomidine, at its clinically relevant concentrations (0.1 nM and 1 nM), was given as pretreatments to HUVECs. Its effects on Cx43 and U937-HUVEC adhesion were also investigated. The results show that inhibiting Cx43 on HUVECs could attenuate the contents of MCP-1, soluble ICAM-1 (sICAM-1), soluble VCAM-1 (sVCAM-1), and the nonprocessed variants of the adhesion molecules ICAM-1 and VCAM-1 and ultimately result in U937-HUVEC adhesion decrease. Meanwhile, the activation of MAPKs was also inhibited. U0126 (inhibiting p-ERK1/2) and SB202190 (inhibiting p38) decreased the contents of MCP-1, sICAM-1, and sVCAM-1, but SP600125 (inhibiting p-JNK1/2) had none of these effects. ICAM-1 and VCAM-1 could be regulated in a similar way. Dexmedetomidine pretreatment inhibited Cx43 on HUVECs, the activation of MAPKs, and U937-HUVEC adhesion. Therefore, we conclude that dexmedetomidine attenuates U937-HUVEC adhesion via inhibiting Cx43 on HUVECs modulating the activation of MAPK signaling pathways

    SLAF-Seq Technology-Based Genome-Wide Association and Population Structure Analyses of Ancient Camellia sinensis (L.) Kuntze in Sandu County, China

    No full text
    Guizhou is one of the centers of origin for the tea plant (Camellia sinensis (L.) Kuntze). The location contains highly diverse ancient tea plant germplasms in its Sandu Aquarium Autonomous County. After a prolonged course of continuous evolution, these ancient plants have gained a wealth of genetic diversity. Their resources could be harnessed for the selection and breeding of fine varieties of tea plant, as well as for the effective utilization and protection of germplasm resources. In this study, the specific locus-amplified fragment (SLAF) sequencing method was used to analyze the population structure and conduct a genome-wide association study (GWAS) for the three traits of 125 ancient tea plants in the Sandu County of Guizhou province, China. A total of 807,743 SLAF tags and 9,428,309 population single-nucleotide polymorphism (SNP) tags were obtained. The results of the phylogenetic tree analysis, cluster analysis, and principal component analysis showed that 125 germplasms were clustered into four groups, and the heterozygosity rates for groups I, II, III, and IV, were 0.211, 0.504, 0.144, and 0.192, respectively. Additionally, GWAS analysis suggested that seven candidate genes were related to altitude at the origin of the plants, eight were related to tree shape, and three were associated with leaf color. In this study, we clarified genetic relationships between four ancient tea plant-producing areas in Sandu County and obtained candidate genes related to their development associated with altitude, tree shape, and leaf color. The study provides useful information for tea plant-breeding development and molecular identification

    Seed-borne viral dsRNA elements in three cultivated Raphanus and Brassica plants suggest three cryptoviruses

    No full text
    Since the 1970s, several dsRNA viruses, including radish yellow edge virus (RYEV), Raphanus sativus virus 1 (RsV1), Raphanus sativus virus 2 (RsV2) and Raphanus sativus virus 3 (RsV3) have been identified and reported as infecting radish. Here, in conjunction with a survey of seed-borne viruses in cultivated Brassica and Raphanus using the dsRNA diagnostic method, we discovered three novel cryptoviruses that infect Brassica and Raphanus: Raphanus sativus partitivirus 1 (RsPV1), which infects radish (Raphanus sativus); Sinapis alba cryptic virus 1 (SaCV1), which infects Sinapis alba; and Brassica rapa cryptic virus 1 (BrCV1), which infects Brassica rapa. The genomic organization of these cryptoviruses was analyzed and characterized. BrCV1 might represent the first plant partitivirus found in Gammapartitivirus. Additionally, the evolutionary relationships among all of the partitiviruses reported in Raphanus and Brassica were analyzed.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore