5 research outputs found

    An Image Based Visual Servo Method for Probe-and-Drogue Autonomous Aerial Refueling

    Full text link
    With the high focus on autonomous aerial refueling recently, it becomes increasingly urgent to design efficient methods or algorithms to solve AAR problems in complicated aerial environments. Apart from the complex aerodynamic disturbance, another problem is the pose estimation error caused by the camera calibration error, installation error, or 3D object modeling error, which may not satisfy the highly accurate docking. The main objective of the effort described in this paper is the implementation of an image-based visual servo control method, which contains the establishment of an image-based visual servo model involving the receiver's dynamics and the design of the corresponding controller. Simulation results indicate that the proposed method can make the system dock successfully under complicated conditions and improve the robustness against pose estimation error

    Natural variation in ZmNAC087 contributes to total root length regulation in maize seedlings under salt stress

    No full text
    Abstract Soil salinity poses a significant challenge to crop growth and productivity, particularly affecting the root system, which is vital for water and nutrient uptake. To identify genetic factors that influence root elongation in stressful environments, we conducted a genome-wide association study (GWAS) to investigate the natural variation associated with total root length (TRL) under salt stress and normal conditions in maize seedlings. Our study identified 69 genetic variants associated with 38 candidate genes, among which a specific single nucleotide polymorphism (SNP) in ZmNAC087 was significantly associated with TRL under salt stress. Transient expression and transactivation assays revealed that ZmNAC087 encodes a nuclear-localized protein with transactivation activity. Further candidate gene association analysis showed that non-coding variations in ZmNAC087 promoter contribute to differential ZmNAC087 expression among maize inbred lines, potentially influencing the variation in salt-regulated TRL. In addition, through nucleotide diversity analysis, neutrality tests, and coalescent simulation, we demonstrated that ZmNAC087 underwent selection during maize domestication and improvement. These findings highlight the significance of natural variation in ZmNAC087, particularly the favorable allele, in maize salt tolerance, providing theoretical basis and valuable genetic resources for the development of salt-tolerant maize germplasm

    A Timing Model for the Optimal Design of a Prototype Active-Matrix Display

    No full text

    High-Temperature-Resistant Fiber Laser Vector Accelerometer Based on a Self-Compensated Multicore Fiber Bragg Grating

    No full text
    We propose and demonstrate a novel high-temperature-resistant vector accelerometer, consisting of a ring cavity laser and sensing probe (i.e., fiber Bragg gratings (FBGs)) inscribed in a seven-core fiber (SCF) by using the femtosecond laser direct writing technique. A ring cavity laser serves as a light source. Three FBGs in the outer cores of SCF, which are not aligned in a straight line, are employed to test the vibration. These three FBGs have 120° angular separation in the SCF, and hence, vibration orientation and acceleration can be measured simultaneously. Moreover, the FBG in the central core was used as a reflector in the ring cavity laser, benefiting to resist external interference factors, such as temperature and strain fluctuation. Such a proposed accelerometer exhibits a working frequency bandwidth ranging from 4 to 68 Hz, a maximum sensitivity of 54.2 mV/g, and the best azimuthal angle accuracy of 0.21° over a range of 0–360°. Furthermore, we investigated the effect of strain and temperature on the performance of this sensor. The signal-to-noise ratio (SNR) only exhibits a fluctuation of ~1 dB in the range (0, 2289 με) and (50 °C, 1050 °C). Hence, such a vector accelerometer can operate in harsh environments, such as in aerospace and a nuclear reactor
    corecore