3 research outputs found

    Genomic analyses of hair from Ludwig van Beethoven

    Get PDF
    Ludwig van Beethoven (1770–1827) remains among the most influential and popular classical music composers. Health problems significantly impacted his career as a composer and pianist, including progressive hearing loss, recurring gastrointestinal complaints, and liver disease. In 1802, Beethoven requested that following his death, his disease be described and made public. Medical biographers have since proposed numerous hypotheses, including many substantially heritable conditions. Here we attempt a genomic analysis of Beethoven in order to elucidate potential underlying genetic and infectious causes of his illnesses. We incorporated improvements in ancient DNA methods into existing protocols for ancient hair samples, enabling the sequencing of high-coverage genomes from small quantities of historical hair. We analyzed eight independently sourced locks of hair attributed to Beethoven, five of which originated from a single European male. We deemed these matching samples to be almost certainly authentic and sequenced Beethoven\u27s genome to 24-fold genomic coverage. Although we could not identify a genetic explanation for Beethoven\u27s hearing disorder or gastrointestinal problems, we found that Beethoven had a genetic predisposition for liver disease. Metagenomic analyses revealed furthermore that Beethoven had a hepatitis B infection during at least the months prior to his death. Together with the genetic predisposition and his broadly accepted alcohol consumption, these present plausible explanations for Beethoven\u27s severe liver disease, which culminated in his death. Unexpectedly, an analysis of Y chromosomes sequenced from five living members of the Van Beethoven patrilineage revealed the occurrence of an extra-pair paternity event in Ludwig van Beethoven\u27s patrilineal ancestry

    Delineating the dispersal of Y-chromosome sub-haplogroup O2a2b-P164 among Austronesian-speaking populations

    No full text
    Abstract This article reports on an exploration of the Y-chromosome sub-haplogroup O2a2b-P164 in Austronesian-speaking populations. Moderate to high abundance of the P 164 mutation is seen in the West Pacific including the Amis of Formosa (36%) and the Filipinos of Mindanao (50%) as well as in the Kiritimati of Micronesia (70%), and Tonga and Samoa of West Polynesia (54% and 33%, respectively), and it drops to low frequencies in populations of East Polynesia. The communities of Polynesia and Micronesia exhibit considerable inter- and intra-population haplotype sharing suggesting extensive population affinity. The observed affinities, as well as the ages and diversity values within the P 164 sub-haplogroup among Austronesian-speaking populations signal an ancestral migration route and relationships that link the Amis of Taiwan with distant communities in West and East Polynesia, Micronesia, and the Maori of New Zealand. High resolution sequencing of the Austronesian Y chromosome indicate that the P 164 lineage originated about 19,000 ya and then split into three branches separating the Ami aborigines, Southeast Asian and Polynesian/Micronesian populations about 4700 ya, roughly coinciding with the initiation of the Austronesian diaspora. The Y-chromosomes of all the Polynesian and Micronesian population examined belong to the new FT 257096 haplogroup

    Related in Death? Further Insights on the Curious Case of Bishop Peder Winstrup and His Grandchild’s Burial

    No full text
    In 2021, we published the results of genomic analyses carried out on the famous bishop of Lund, Peder Winstrup, and the mummified remains of a 5–6-month-old fetus discovered in the same burial. We concluded that the two individuals were second-degree relatives and explored the genealogy of Peder Winstrup to further understand the possible relation between them. Through this analysis, we found that the boy was most probably Winstrup’s grandson and that the two were equally likely related either through Winstrup’s son, Peder, or his daughter, Anna Maria von Böhnen. To further resolve the specific kinship relation, we generated more genomic data from both Winstrup and the boy and implemented more recently published analytical tools in detailed Y chromosome- and X chromosome-based kinship analyses to distinguish between the competing hypotheses regarding maternal and paternal relatedness. We found that the individuals’ Y chromosome lineages belonged to different sub-lineages and that the X-chromosomal kinship coefficient calculated between the two individuals were elevated, suggesting a grandparent–grandchild relation through a female, i.e., Anna Maria von Böhnen. Finally, we also performed metagenomic analyses, which did not identify any pathogens that could be unambiguously associated with the fatalities
    corecore