3 research outputs found

    Xylene versus Isopropanol for Paraffin Wax Processing of Lung Tissue

    No full text
    The microscopic observation of lung tissue is challenging due to its fragile nature. Xylene and isopropanol are common tissue-clearing reagents used before paraffin embedding, yet no studies have compared these two reagents in lung tissue processing. Due to the well-known health risks xylene could introduce to operators, as well as its environmental hazards, it has long been desired that a less harmful alternative to xylene with the same staining effects be introduced. Thus, we systematically assessed the efficacy of isopropanol as a substitution for xylene. Lung tissue obtained from diseased donors and explanted lungs from recipients were processed simultaneously using either xylene or isopropanol prior to paraffin embedding. Scoring of the overall staining quality after H&E staining, along with the ease of sectioning, was compared systematically. Fluorescent staining was performed to explore alveolar morphology and the overall lectin fluorescence signal between groups. To understand differences in antibody staining, the signal-to-noise ratio (SNR) of smooth muscle actin (SMA) and elastin was examined. No difference was observed with regard to ease of sectioning, staining quality, alveolar circularity, alveolar wall thickness or the SNR between slides processed with xylene or isopropanol. This study demonstrated comparable outcomes of isopropanol and xylene in lung tissue processing, suggesting isopropanol as a more favorable, operator- and environment-friendly substitute for xylene with regards to tissue processing

    TRIP13 Enhances Radioresistance of Lung Adenocarcinoma Cells 
through the Homologous Recombination Pathway

    No full text
    Background and objective Radiation therapy is one of the most common treatments for non-small cell lung cancer (NSCLC). However, the insensitivity of some tumor cells to radiation is one of the major reasons for the poor efficacy of radiotherapy and the poor prognosis of patients, and exploring the underlying mechanisms behind radioresistance is the key to solving this clinical challenge. This study aimed to identify the molecules associated with radioresistance in lung adenocarcinoma (LUAD), identified thyroid hormone receptor interactor 13 (TRIP13) as the main target initially, and explored whether TRIP13 is related to radioresistance in LUAD and the specific mechanism, with the aim of providing theoretical basis and potential targets for the combination therapy of LUAD patients receiving radiotherapy in the clinic. Methods Three datasets, GSE18842, GSE19188 and GSE33532, were selected from the Gene Expression Omnibus (GEO) database and screened for differentially expressed genes (|log FC|>1.5, P<0.05) in each of the three datasets using the R 4.1.3 software, and then Venn diagram was used to find out the differentially expressed genes common to the three datasets. The screened differential genes were then subjected to protein-protein interaction (PPI) analysis and module analysis with the help of STRING online tool and Cytoscape software, and survival prognosis analysis was performed for each gene with the help of Kaplan-Meier Plotter database, and the TRIP13 gene was identified as the main molecule for subsequent studies. Subsequently, the human LUAD cell line H292 was irradiated with multiple X-rays using a sub-lethal dose irradiation method to construct a radioresistant cell line, H292DR. The radioresistance of H292DR cells was verified using cell counting kit-8 (CCK-8) assay and clone formation assay. The expression levels of TRIP13 in H292 and H292DR cells were measured by Western blot. Small interfering RNA (siRNA) was used to silence the expression of TRIP13 in H292DR cells and Western blot assay was performed. The clone formation ability and migration ability of H292DR cells were observed after TRIP13 silencing, followed by the detection of changes in the expression levels of proteins closely related to homologous recombination, such as ataxia telangiectasia mutated (ATM) protein. Results Screening of multiple GEO datasets, validation of external datasets and survival analysis revealed that TRIP13 was highly expressed in LUAD and was associated with poor prognosis in LUAD patients who had received radiation therapy. And the results of gene set enrichment analysis (GSEA) of TRIP13 suggested that TRIP13 might be closely associated with LUAD radioresistance by promoting homologous recombination repair after radiation therapy. Experimentally, TRIP13 expression was found to be upregulated in H292DR, and silencing of TRIP13 was able to increase the sensitivity of H292DR cells to radiation. Conclusion TRIP13 is associated with poor prognosis in LUAD patients treated with radiation, possibly by promoting a homologous recombination repair pathway to mediate resistance of LUAD cells to radiation

    Fecal microbiota transplantation in obesity metabolism : A meta analysis and systematic review

    No full text
    Objective: The effect of fecal microbiota transplantation (FMT) on microbiota engraftment in patients with metabolic syndrome remains unclear. This systematic review employed a meta-analysis of RCTs for assessment on the role of FMT in treating obesity and metabolic syndrome, and its impact on clinically relevant parameters. Method: Major databases and grey literatures were searched identifying RCTs comparing FMT of lean donors with placebo in obese/metabolic syndrome patients. Studies using any form of placebo were included. Variations in the parameters before and after treatment were calculated followed by meta-analyses. Result: Ten studies met the inclusion criteria and a total of 334 patients were included for further analysis. Clinically significant parameters associated with obesity and metabolic syndrome were explored and FMT was identified significantly and negatively associated with most indices of abdominal adiposity including caloric intake, fasting glucose, HOMA-IR, systolic blood pressure, diastolic blood pressure, total cholesterol, HDL, LDL, triglycerides and CRP, Obesity parameters including fasting glucose and acetic acid were increased following FMT. Conclusion: FMT is more advantageous for obese patients with elevated blood pressure, disordered glucose and insulin metabolism, and elevated blood lipids. The study of metabolic factors in obese patients will be our starting point in the future
    corecore