49 research outputs found

    High-efficiency single-photon source above the loss-tolerant threshold for efficient linear optical quantum computing

    Full text link
    Photon loss is the biggest enemy for scalable photonic quantum information processing. This problem can be tackled by using quantum error correction, provided that the overall photon loss is below a threshold of 1/3. However, all reported on-demand and indistinguishable single-photon sources still fall short of this threshold. Here, by using tailor shaped laser pulse excitation on a high-quantum efficiency single quantum dot deterministically coupled to a tunable open microcavity, we demonstrate a high-performance source with a single-photon purity of 0.9795(6), photon indistinguishability of 0.9856(13), and an overall system efficiency of 0.712(18), simultaneously. This source for the first time reaches the efficiency threshold for scalable photonic quantum computing. With this source, we further demonstrate 1.89(14) dB intensity squeezing, and consecutive 40-photon events with 1.67 mHz count rate

    Molecular subtypes predict the preferential site of distant metastasis in advanced breast cancer: a nationwide retrospective study

    Get PDF
    ObjectiveThis study aimed to explore possible associations between molecular subtypes and site of distant metastasis in advanced breast cancer (ABC).Methods3577 ABC patients were selected from 21 hospitals of seven geographic regions in China from 2012-2014. A questionnaire was designed to collect medical information regarding demographic characteristics, risk factors, molecular subtype, recurrence/metastasis information, and disease-free survival (DFS). The cancers were classified into Luminal A, Luminal B, HER2-enriched and Triple Negative subtypes. Chi-square test and multivariate Cox proportional hazard models were performed to explore the associations between molecular subtypes and distant metastasis sites.ResultsA total of 2393 cases with molecular subtypes information were finally examined. Patients with Luminal A (51.1%) and Luminal B (44.7%) were most prone to bone metastasis, whereas liver metastasis was more frequently observed in HER2-enriched ABC patients (29.1%).The cumulative recurrence and metastasis rates of ABC patients at 36 months of DFS were the most significant within molecular types, of which Triple Negative was the highest (82.7%), while that of Luminal A was the lowest (58.4%). In the adjusted Cox regression analysis, Luminal B, HER2-enriched and Triple Negative subtypes increased the risk of visceral metastasis by 23%, 46% and 87% respectively. In addition, Triple Negative patients had a higher probability of brain metastasis (HR 3.07, 95% CI: 1.04-9.07).ConclusionMolecular subtypes can predict the preferential sites of distant metastasis, emphasizing that these associations were of great help in choices for surveillance, developing appropriate screening and cancer management strategies for follow-up and personalized therapy in ABC patients

    A Prebiotic Selection of β-Furanoside-5\u27-Phosphate as the Sole Configuration toward the Synthesis of Extant RNA

    No full text
    The cause of the selection of β-furanoside-5\u27-phosphate as the backbone configuration of RNA during life’s origins has not been fully determined. Previous attempts were mostly unsuccessful in demonstrating either a selective synthesis or a selection mechanism for β-furanoside and 5\u27-nucleotide in the nucleosidation and phosphorylation steps. These questions are answered in this study. Inspired by the chromatographic elution order of nucleoside and nucleotide isomers, a unique separation mechanism has been established. It is discovered that β-furanoside is the most permeable configurational isomer across a lipid protomembrane as compared with other isomers, and becomes the most abundant isomer through permeation. In the meantime, phosphate can be transported across the lipid membrane and preserved inside the protocell in its soluble form, thereby circumventing its abundance and availability issues. The phosphorylation step is likely to take place intracellularly, where the formed nucleotide isomers are again screened by the lipid membrane via a reverse permeation, leaving 5\u27-nucleotide the enriched ribonucleotide species in the protocell for the upcoming transformations such as oligomerization. These findings depict a primitive selection mechanism driven by physicochemical forces to advance critical steps in molecular evolution, which could be one of the earliest protocellular functions

    New Technology and Experimental Research on Thick-Walled Tube Fatigue Impact Loading Precision Separation

    No full text
    Traditional separation methods for thick-walled metal tubes include turning and sawing, which suffer from wasted raw material and low efficiency. In view of this, this paper proposes a new process of using impact load to promote crack generation and tube separation. Based on the principles of radial repeated impact load, stress concentration effect and fatigue fracture, the rapid initiation and stable expansion of tube fatigue crack are promoted. In addition, the crack initiation mechanism of the tube V-notch root cracks under radial repeated load when the tube is in a restrained state. For the experimental study of the GCr15 steel tube, a multistep decline frequency time tube separation control curve with an initial frequency from 4 Hz to 31 Hz and termination frequency from 1 Hz to 8.5 Hz was designed, and the precision tube separation device is loaded by pneumatic fatigue shock to achieve tube precision separation. In addition, a tube fracture quality evaluation method is proposed. According to the test results, the stress concentration effect of V-notch can significantly reduce the average stress in the process of tube fatigue separation and accelerate the generation of microcracks. Under the continuous action of repeated impact load, the loading method of multistep decline can effectively control the rapid crack initiation and stable expansion of the GCr15 tube V-notch root crack. Moreover, the tube final fracture region has relatively small defects, which can obtain good fracture quality

    Weighted Gene Co-expression Network Analysis (WGCNA) Reveals the Hub Role of Protein Ubiquitination in the Acquisition of Desiccation Tolerance in Boea hygrometrica

    No full text
    Boea hygrometrica can survive extreme drought conditions and has been used as a model to study desiccation tolerance. A genome-wide transcriptome analysis of B. hygrometrica showed that the plant can survive rapid air-drying after experiencing a slow soil-drying acclimation phase. In addition, a weighted gene co-expression network analysis was used to study the transcriptomic datasets. A network comprising 22 modules was constructed, and seven modules were found to be significantly related to desiccation response using an enrichment analysis. Protein ubiquitination was observed to be a common process linked to hub genes in all the seven modules. Ubiquitin-modified proteins with diversified functions were identified using immunoprecipitation coupled with mass spectrometry. The lowest level of ubiquitination was noted at the full soil drying priming stage, which coincided the accumulation of dehydration-responsive gene BhLEA2. The highly conserved RY motif (CAT GCA) was identified from the promoters of ubiquitin-related genes that were downregulated in the desiccated samples. An in silico gene expression analysis showed that the negative regulation of ubiquitin-related genes is potentially mediated via a B3 domain-containing transcription repressor VAL1. This study suggests that priming may involve the transcriptional regulation of several major processes, and the transcriptional regulation of genes in protein ubiquitination may play a hub role to deliver acclimation signals to posttranslational level in the acquisition of desiccation tolerance in B. hygrometrica

    Facile fabrication of CdS/ZnAlO heterojunction with enhanced photocatalytic activity for Cr(VI) reduction under visible light

    No full text
    Cadmium sulfide (CdS) is an excellent visible light responsive material for the appropriate band gap, but the high electron-hole recombination and particle aggregation of CdS seriously limited its practical application in photocatalysis. In this work, the CdS/ZnAlO heterostructures photocatalyst was synthesized via a facile hydrothermal method. The structural characterizations showed that the particles aggregation of CdS and the separation of photogenerated electron-hole pairs were obviously improvement. The CdS/ZnAlO composite showed the highest photocatalytic activity for Cr(VI) reduction under visible light within 120 min. The enhanced photocatalytic activity might be attributed to the synergistic effect of the effective separation of photogenerated electron-hole and the adsorption of Cr(VI) on the interface of the catalyst. In addition, the possible mechanism of Cr(VI) reduction over CdS/ZnAlO was also proposed. The present work is devoted to synthesise a high efficient and stable photocatalyst for Cr(VI) contaminated wastewater treatment

    An integrated data analysis reveals distribution, hosts, and pathogen diversity of Haemaphysalis concinna

    No full text
    Abstract Background Haemaphysalis concinna, carrying multiple pathogens, has attracted increasing attention because of its expanded geographical range and significant role in disease transmission. This study aimed to identify the potential public health risks posed by H. concinna and H. concinna-associated pathogens. Methods A comprehensive database integrating a field survey, literature review, reference book, and relevant websites was developed. The geographical distribution of H. concinna and its associated pathogens was illustrated using ArcGIS. Meta-analysis was performed to estimate the prevalence of H. concinna-associated microbes. Phylogenetic and geographical methods were used to investigate the role of birds in the transmission of H. concinna-associated microbes. The potential global distribution of H. concinna was predicted by ecological niche modeling. Results Haemaphysalis concinna was distributed in 34 countries across the Eurasian continent, predominantly in China, Russia, and Central Europe. The tick species carried at least 40 human pathogens, including six species in the Anaplasmataceae family, five species of Babesia, four genospecies in the complex Borrelia burgdorferi sensu lato, ten species of spotted fever group rickettsiae, ten species of viruses, as well as Francisella, Coxiella, and other bacteria. Haemaphysalis concinna could parasitize 119 host species, with nearly half of them being birds, which played a crucial role in the long-distance transmission of tick-borne microbes. Our predictive modeling suggested that H. concinna could potentially survive in regions where the tick has never been previously recorded such as central North America, southern South America, southeast Oceania, and southern Africa. Conclusions Our study revealed the wide distribution, broad host range, and pathogen diversity of H. concinna. Authorities, healthcare professionals, and the entire community should address the growing threat of H. concinna and associated pathogens. Tick monitoring and control, pathogen identification, diagnostic tools, and continuous research should be enhanced. Graphical Abstrac

    Modulation of volatile compound metabolome and transcriptome in grape berries exposed to sunlight under dry-hot climate

    No full text
    Background Basal leaf removal is widely practiced to increase grape cluster sunlight exposure that controls berry rot and improves quality. Studies on its influence on volatile compounds in grape berries have been performed mostly in Mediterranean or marine climate regions. It is uncertain whether similar efficiency can be achieved when grape berries are grown under continental climate. This study aimed to dissect the variation in volatile compound production and transcriptome in sunlight-exposed grape berries in a dry-hot climate region and to propose the key genes related to the variation. Results Four cluster sunlight exposure strategies, including basal leaf removal at pepper-corn size stage, leaf removal at veraison (LR-V), leaf moving at veraison (LM-V), and half-leaf removal at veraison, were implemented at the north foot of the Mt. Tianshan region of northwestern China. Various cluster exposure treatments resulted in a decline in the concentrations of norisoprenoids and monoterpenes in ripening grape berries. Both beta-carotene and lutein, the substrates of norisoprenoid biosynthesis, were reduced by cluster sunlight exposure. K-means cluster analysis showed that some genes involved in biosynthesis such as VviTPS55, VviTPS60, VviTPS66, VviCCD4a and VviCCD4b exhibited lower expression levels in exposed berries at least at one of the tested stages. Two C6-derived esters with fruity attributes, ethyl hexanoate and hexyl acetate, were reduced markedly. In contrast, main C6 alcohol compound levels were elevated in the LR-V- and LM-V-treated grape berries, which corresponded to the up-regulated expression of VviLOXA, VviLOXO and VviADH1 in the oxylipin pathway. Most of the differentially expressed genes in the exposed and control berries were enriched to the stress response processes, and this transcriptome difference was accumulated as the berries matured. Besides, LR-V treatment stimulated a significant up-regulation in photosynthesis-related genes in the grape berries, which did not happen with LM-V treatment. Conclusions Cluster sunlight exposure in dry-hot climate viticulture resulted in different volatile-targeted transcriptomic and metabolic responses from those obtained in the temperate Mediterranean or marine climate region. Therefore, a modified canopy management should be adopted to improve the aroma of grape berries
    corecore