5 research outputs found

    The isolated proteolytic domain of Escherichia coli ATP-dependent protease Lon exhibits the peptidase activity

    Get PDF
    AbstractSelective protein degradation is an energy-dependent process performed by high-molecular-weight proteases. The activity of proteolytic components of these enzymes is coupled to the ATPase activity of their regulatory subunits or domains. Here, we obtained the proteolytic domain of Escherichia coli protease Lon by cloning the corresponding fragment of the lon gene in pGEX-KG, expression of the hybrid protein, and isolation of the proteolytic domain after hydrolysis of the hybrid protein with thrombin. The isolated proteolytic domain exhibited almost no activity toward protein substrates (casein) but hydrolyzed peptide substrates (melittin), thereby confirming the importance of the ATPase component for protein hydrolysis. Protease Lon and its proteolytic domain differed in the efficiency and specificity of melittin hydrolysis

    Biodiversity of Thermophilic Prokaryotes with Hydrolytic Activities in Hot Springs of Uzon Caldera, Kamchatka (Russia)▿ †

    No full text
    Samples of water from the hot springs of Uzon Caldera with temperatures from 68 to 87°C and pHs of 4.1 to 7.0, supplemented with proteinaceous (albumin, casein, or α- or β-keratin) or carbohydrate (cellulose, carboxymethyl cellulose, chitin, or agarose) biological polymers, were filled with thermal water and incubated at the same sites, with the contents of the tubes freely accessible to the hydrothermal fluid. As a result, several enrichment cultures growing in situ on different polymeric substrates were obtained. Denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA gene fragments obtained after PCR with Bacteria-specific primers showed that the bacterial communities developing on carbohydrates included the genera Caldicellulosiruptor and Dictyoglomus and that those developing on proteins contained members of the Thermotogales order. DGGE analysis performed after PCR with Archaea- and Crenarchaeota-specific primers showed that archaea related to uncultured environmental clones, particularly those of the Crenarchaeota phylum, were present in both carbohydrate- and protein-degrading communities. Five isolates obtained from in situ enrichments or corresponding natural samples of water and sediments represented the bacterial genera Dictyoglomus and Caldanaerobacter as well as new archaea of the Crenarchaeota phylum. Thus, in situ enrichment and consequent isolation showed the diversity of thermophilic prokaryotes competing for biopolymers in microbial communities of terrestrial hot springs
    corecore