403 research outputs found
Validation of a German version of the Boredom Proneness Scale and the Multidimensional State Boredom Scale
The scientific interest in boredom is growing over the past decades. Boredom has not only been linked to symptoms of psychopathology, but also shows a remarkable effect on individual behavior under healthy conditions. Current characterizations of boredom in humans mostly rely on self-report assessments which proved to faithfully reflect boredom in a vast range of experimental environments. Two of the most commonly used and prominent self-report scales in order to assess boredom are the Multidimensional State Boredom Scale (MSBS) and the Boredom Proneness Scale (BPS). Here, we present the German translations of both questionnaires and their validation. We obtained and analyzed psychometric data from more than 800 healthy individuals. We find that the German MSBS and BPS show vast congruence with their originals in respect to item statistics, internal reliability and validity. In particular, we find remarkable associations of state boredom and trait boredom with indicators of mental burden. Testing the factor structure of both questionnaires, we find supporting evidence for a 5-factor model of the MSBS, whereas the BPS in line with its original shows an irregular, inconsistent factor structure. Thus, we validate the German versions of MSBS and BPS and set a starting point for further studies of boredom in German-speaking collectives
Editorial: Carbon storage in agricultural and forest soils
International audienc
The in vitro viability and growth of fibroblasts cultured in the presence of different bone grafting materials (NanoBone® and Straumann Bone Ceramic®)
Different clinical applications, including dentistry, are making increasing demands
on bone grafting material. In the present study we have analysed the viability,
proliferation and growth characteristics of fibroblasts cultured in vitro together
with two different bone grafting materials, NanoBone® and Straumann Bone
Ceramic®, over a period of 24 and 28 days respectively. Viability was measured
at least every 72 hours by using the alamarBlue assay, a test that measures
quantitatively cell proliferation and viability but does not require cell fixation or
extraction. After one week of culture fibroblast viability was as high as in controls
for both grafting materials and remained high (> 90%) for the duration of
the experiment. Cell growth was evaluated microscopically. Scanning electron
microscopy revealed a dense fibroblast growth at the surface of both bone grafting
materials after three weeks of in vitro culture. Generally, our in vitro analyses
contribute to further insights into cell - scaffold interactions
The biodegradation of hydroxyapatite bone graft substitutes in vivo
Hydroxyapatite (HA) ceramics are widely used for bone reconstruction. They are
osteoconductive and serve as structural scaffolds for the deposition of new bone.
Generally, scaffold materials should be degradable as they affect the mechanical
properties of the reconstructed bone negatively. Degradation by osteoclasts
during the bone remodelling process is desirable but often does not take place.
In the current study we analysed by light microscopy the degradation of two
granular HA implants in critically sized defects in the mandibula of Goettingen
mini-pigs five weeks after implantation. Bio-Oss® consists of sintered bovine
bone and NanoBone® is a synthetic HA produced in a sol-gel process in the
presence of SiO2. We found that both biomaterials were degraded by osteoclasts
with ruffled borders and acid phosphatase activity. The osteoclasts created
resorption lacunae and resorptive trails and contained mineral particles. Frequently,
resorption surfaces were in direct contact with bone formative surfaces
on one granule. Granules, especially of NanoBone®, were also covered by osteoclasts
if located in vascularised connective tissue distant from bone tissue.
However, this usually occurred without the creation of resorption lacunae. The
former defect margins consisted of newly formed bone often without remnants
of bone substitutes. Our results show that the degradation of both biomaterials
corresponds to the natural bone degradation processes and suggest the possibility
of complete resorption during bone remodelling
The survival and proliferation of fibroblasts on orthodontic miniscrews with different surface treatment: an in vitro study
It is of fundamental importance for prosthodontic and orthodontic applications
that there is a short osseointegration time of dental implants without inflammation
of the surrounding tissue. In addition to the chemical properties of the
implant material, the surface morphology is an equally critical parameter. The
objective of this work was to study the effect of two simple surface treatments
on the survival and proliferation of fibroblasts.
Three groups of orthodontic miniscrews (Mondeal®) were used. One group was
given an airflow (EMS, Schweiz) treatment, the second was sand-blasted in the
area of the threading and a third group served as a control. After preparation
sterilised screws were cultured in vitro with fibroblasts (L-929). The metabolic
cell activity on the implant surface was determined after 24, 48 and 120 hours
using the alamarBlue assay and a count of DAPI labelled fibroblasts was performed
with a fluorescence microscope.
After 24 hours, but not at 48 hours and 120 hours, the metabolic activity of the
fibroblasts was slightly decreased for the airflow screw group. Generally, no
significant difference was found regarding metabolic activity and proliferation
of fibroblasts within the different groups
Bone functions and the requirements for bone grafts and substitutes in the orofacial region
Bone is the largest calcium storage, has distinctive plasticity and adaptability and
is part of the supporting tissue. An adequate composition is thus necessary. The
bone matrix consists of organic and anorganic structures. Osteoblasts, osteoclasts
and osteocytes are responsible for bone formation, resorption and metabolism.
The periosteum, endosteum and bone tissue are a functional unit and provide
protection, nutrition and growth. Bone is subject to continuous remodelling
Critical considerations on the diagnostic appraisal, adaptation and remodelling of bone graft substitutes
The diagnostic assessment of skeletal defects has a long-standing tradition. As
a result of the development of new bone grafting materials, the demands on
diagnostic assessment have also increased. The mode and quality of diagnostic
appraisal are crucial to further clinical use and outcome prediction. Alongside
traditional clinical and biological techniques, molecular biological methods have
gained a broad scope of application and will be used even more frequently in
the future
Wound management after the application of bone grafting substitutes in the orofacial region
Surgical dressing after the application of bone grafting material depends on the
type and size of the defect. A complete and tension-free wound closure has
proved to be successful. In this context the infection problem needs special
attention. Bone graft substitutes with an adequate surface structure, porosity
and chemical properties, in combination with sufficient blood circulation, hold
osteoconductive potential. They serve as a guide rail for the osteoblast-induced
formation of new bone tissue, which at best may lead to complete replacement
of the grafting material
- …