22 research outputs found

    Power scaling of high-power linearly polarized fiber lasers with <10 GHz linewidth

    Get PDF
    In this work, an all-fiberized polarization-maintained (PM) fiber laser has been demonstrated with a near-top-hat-shaped spectrum. By optimizing the modulation signal to generate near-top-hat-shaped spectrums, a 3-kW PM fiber laser has been achieved at &lt;10 GHz linewidth with the polarization extinction ratio of 96% and beam quality of 1.156, which is the highest output power ever reported with approximately 10 GHz linewidth, and further scaling of output power is limited by stimulated Brillouin scattering. By decomposing the mode content, the proportion of the fundamental mode in the output laser is above 97%. The stimulated Raman scattering suppression ratio reaches 62 dB at the maximal output power

    Metasurface-generating high purity narrow linewidth cylindrical vector beams: power scaling and its limitation

    Get PDF
    1.89 kW cylindrical vector beams (CVBs) at 1,064 nm with the 3 dB linewidth being about 0.08 nm have been generated from a narrow linewidth all-fiber linearly-polarized laser by metasurface extra-cavity conversion. At the maximum output power, the transmission efficiency, mode purity of radially polarized cylindrical vector beams (RP-CVBs) are 97% and 92.7%, respectively. To the best of our knowledge, this is the highest power of narrow linewidth CVBs generated from fiber laser. The temperature of the metasurface is moderate, and the maximum temperature is 75.5°C at 1.89 kW, which means that the system can be further power scaled. The evolution of mode purity has been analyzed numerically, and the influence of high-order modes (HOM) in laser source and thermal effects of metasurface has been calculated, which reveals that the presence of high-order modes and the temperature rise of metasurface degrade the mode purity of the CVBs. Among them, HOM causes a degradation of 1.68%, thermal lensing effect contributes 2.32%, and the microstructure variation of the metasurface contributes the remaining 3.3%
    corecore