20 research outputs found
Authors' Reply - Current CKD Definition Takes into Account Both Relative and Absolute Risk
Contains fulltext :
218844.pdf (Publisher’s version ) (Closed access
Glomerular filtration rate estimates decrease during high altitude expedition but increase with Lake Louise acute mountain sickness scores
AIM: Acute mountain sickness (AMS) can result in pulmonary and cerebral oedema with overperfusion of microvascular beds, elevated hydrostatic capillary pressure, capillary leakage and consequent oedema as pathogenetic mechanisms. Data on changes in glomerular filtration rate (GFR) at altitudes above 5000 m are very limited. METHODS: Thirty-four healthy mountaineers, who were randomized to two acclimatization protocols, undertook an expedition on Muztagh Ata Mountain (7549 m) in China. Tests were performed at five altitudes: Zurich pre-expedition (PE, 450 m), base camp (BC, 4497 m), Camp 1 (C1, 5533 m), Camp 2 (C2, 6265 m) and Camp 3 (C3, 6865 m). Cystatin C- and creatinine-based (Mayo Clinic quadratic equation) GFR estimates (eGFR) were assessed together with Lake Louise AMS score and other tests. RESULTS: eGFR significantly decreased from PE to BC (P < 0.01). However, when analysing at changes between BC and C3, only cystatin C-based estimates indicated a significant decrease in GFR (P = 0.02). There was a linear decrease in eGFR from PE to C3, with a decrease of approx. 3.1 mL min(-1) 1.73 m(-2) per 1000 m increase in altitude. No differences between eGFR of the two groups with different acclimatization protocols could be observed. There was a significant association between eGFR and haematocrit (P = 0.01), whereas no significant association between eGFR and aldosterone, renin and brain natriuretic peptide could be observed. Finally, higher AMS scores were significantly associated with higher eGFR (P = 0.01). CONCLUSIONS: Renal function declines when ascending from low to high altitude. Cystatin C-based eGFR decreases during ascent in high altitude expedition but increases with AMS scores. For individuals with eGFR <40 mL min(-1) 1.73 m(-2), caution may be necessary when planning trips to high altitude above 4500 m above sea level
New Creatinine- and Cystatin C-Based Equations to Estimate GFR without Race.
Current equations for estimated glomerular filtration rate (eGFR) that use serum creatinine or cystatin C incorporate age, sex, and race to estimate measured GFR. However, race in eGFR equations is a social and not a biologic construct.
We developed new eGFR equations without race using data from two development data sets: 10 studies (8254 participants, 31.5% Black) for serum creatinine and 13 studies (5352 participants, 39.7% Black) for both serum creatinine and cystatin C. In a validation data set of 12 studies (4050 participants, 14.3% Black), we compared the accuracy of new eGFR equations to measured GFR. We projected the prevalence of chronic kidney disease (CKD) and GFR stages in a sample of U.S. adults, using current and new equations.
In the validation data set, the current creatinine equation that uses age, sex, and race overestimated measured GFR in Blacks (median, 3.7 ml per minute per 1.73 m <sup>2</sup> of body-surface area; 95% confidence interval [CI], 1.8 to 5.4) and to a lesser degree in non-Blacks (median, 0.5 ml per minute per 1.73 m <sup>2</sup> ; 95% CI, 0.0 to 0.9). When the adjustment for Black race was omitted from the current eGFR equation, measured GFR in Blacks was underestimated (median, 7.1 ml per minute per 1.73 m <sup>2</sup> ; 95% CI, 5.9 to 8.8). A new equation using age and sex and omitting race underestimated measured GFR in Blacks (median, 3.6 ml per minute per 1.73 m <sup>2</sup> ; 95% CI, 1.8 to 5.5) and overestimated measured GFR in non-Blacks (median, 3.9 ml per minute per 1.73 m <sup>2</sup> ; 95% CI, 3.4 to 4.4). For all equations, 85% or more of the eGFRs for Blacks and non-Blacks were within 30% of measured GFR. New creatinine-cystatin C equations without race were more accurate than new creatinine equations, with smaller differences between race groups. As compared with the current creatinine equation, the new creatinine equations, but not the new creatinine-cystatin C equations, increased population estimates of CKD prevalence among Blacks and yielded similar or lower prevalence among non-Blacks.
New eGFR equations that incorporate creatinine and cystatin C but omit race are more accurate and led to smaller differences between Black participants and non-Black participants than new equations without race with either creatinine or cystatin C alone. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases.)