7 research outputs found

    Dynamic Change of Gut Microbiota During Porcine Epidemic Diarrhea Virus Infection in Suckling Piglets

    Get PDF
    Porcine epidemic diarrhea (PED) is a disease that has a devastating effect on livestock. Currently, most studies are focused on comparing gut microbiota of healthy piglets and piglets with PED, resulting in gut microbial populations related to dynamic change in diarrheal piglets being poorly understood. The current study analyzed the characteristics of gut microbiota in porcine epidemic diarrhea virus (PEDV)-infected piglets during the suckling transition stage. Fresh fecal samples were collected from 1 to 3-week-old healthy piglets (n = 20) and PEDV infected piglets (n = 18) from the same swine farm. Total DNA was extracted from each sample and the V3–V4 hypervariable region of the 16S rRNA gene was amplified and sequenced using the Illumina MiSeq platform. Statistically significant differences were observed in bacterial diversity and richness between the healthy and diarrheal piglets. Principal coordinates analysis (PCoA) showed structural segregation between diseased and healthy groups, as well as among 3 different age groups. The abundance of Escherichia-Shigella, Enterococcus, Fusobacterium, and Veillonella increased due to dysbiosis induced by PEDV infection. Notably, there was a remarkable age-related increase in Fusobacterium and Veillonella in diarrheal piglets. Certain SCFA-producing bacteria, such as Ruminococcaceae_UCG-002, Butyricimonas, and Alistipes, were shared by all healthy piglets, but were not identified in various age groups of diarrheal piglets. In addition, significant differences were observed between clusters of orthologous groups (COG) functional categories of healthy and PEDV-infected piglets. Our findings demonstrated that PEDV infection caused severe perturbations in porcine gut microbiota. Therefore, regulating gut microbiota in an age-related manner may be a promising method for the prevention or treatment of PEDV

    Comparison of Oropharyngeal Microbiota in Healthy Piglets and Piglets With Respiratory Disease

    Get PDF
    Porcine respiratory disease (PRD) is responsible for severe economic losses in the swine industry worldwide. Our objective was to characterize the oropharyngeal microbiota of suckling piglets and compare the microbiota of healthy piglets and piglets with PRD. Oropharyngeal swabs were collected from healthy (Healthy_A, n = 6; Healthy_B, n = 4) and diseased (PRD_A, n = 18; PRD_B, n = 5) piglets at 2–3 weeks of age from two swine farms in Guangdong province, China. Total DNA was extracted from each sample and the V3-V4 hypervariable region of the 16S rRNA gene was amplified and sequenced using the Illumina MiSeq platform. No statistically significant differences were observed in bacterial diversity and richness between the healthy and PRD groups in the two farms except for Shannon index in farm A. Principal coordinates analysis (PCoA) showed structural segregation between diseased and healthy groups and between groups of different farms. Among all samples, the phyla Firmicutes, Proteobacteria, and Bacteroidetes were predominant. At the genus level, Streptococcus, Lactobacillus, and Actinobacillus were the core genera in the oropharynx of healthy piglets from the two farms. Significant differences in bacterial taxa were found when the microbiota was compared regarding the health status. In farm A, the percentages of Moraxella and Veillonella were higher in the PRD group, while only Porphyromonas was significantly increased in the PRD group in farm B (p < 0.05). Compared to PRD groups, statistically significant predominance of Lactobacillus was observed in the healthy groups from both farms (p < 0.05). Our findings revealed that Moraxella, Veillonella, and Porphyromonas may play a potential role in PRD and Lactobacillus may have a protective role against respiratory diseases

    Pseudorabies gD protein protects mice and piglets against lethal doses of pseudorabies virus

    Get PDF
    IntroductionPseudorabies (PR) is a highly contagious viral disease caused by the pseudorabies virus (PRV), which can cause disease in a wide range of domestic and wild animals. Studies have shown that new mutant strains have emerged in pig farms in many regions and that commercial inactivated and live attenuated vaccines are becoming less effective at protecting pigs.MethodsPorcine pseudorabies glycoprotein D (gD) gene (GenBank: QEY95774.1) with hexa-His tag to the C terminus for further purification processes was cloned into the lentiviral expression plasmid pLV-CMV-eGFP by restriction enzyme, the resulting plasmid was designated as pLV-CMV-gD. HEK-293T cells with robust and stable expression of recombinant gD protein was established by infection with recombinant lentivirus vector pLV-CMV-gD. We expressed porcine pseudorabies virus gD protein using HEK-293T cells.ResultsWe describe in this study that individual gD proteins produced by a mammalian cell expression system are well immunogenic and stimulate high levels of PRV-specific and neutralizing antibodies in mice and piglets. All mice and piglets survived lethal doses of PRV, significantly reducing the amount of PRV virus in piglets’ lymph nodes, lungs, spleen, and other tissues. It also significantly reduced the time cycle and amount of viral excretion from piglets to the environment through the nasal and anal cavities.DiscussionThe results suggest that PRV gD protein is expected to be a potential candidate for the preparation of genetically engineered PR vaccines for the prevention of PRV infection and the control of PR epidemics

    High-throughput sequencing of 16S rRNA gene analysis reveals novel taxonomic diversity among vaginal microbiota in healthy and affected sows with endometritis

    No full text
    In sows afflicted with endometritis, vaginal microbiota can provide valuable information regarding bacterial community diversity. Our aim was to compare the vaginal microbiotas between endometritis and healthy sows and characterize the vaginal microbiota of endometritis sows using high-throughput sequencing of the 16S rRNA gene. Vaginal swabs were collected from healthy (Healthy_A, n = 10; Healthy_B, n = 10) and diseased (Endometritis_A, n = 10; Endometritis_B, n = 10) sows from two swine farms located in Guangdong and Yunnan province, in Southern China. The results of V3-V4 region of the 16S rRNA gene showed that Corynebacterium_1, Clostridium_sensu_stricto_1, Porphyromonas, Anaerococcus, Streptococcus, and Bacteroides comprised the core microbiota in all healthy sows. Two type of endometritis microbiota patterns were presented in two farms: the first comprised mostly of Burkholderia in farm A and the second comprised of Parvimonas in farm B. In farm A, the percentages of Burkholderia, Serratia, and Enterobacter were higher in the endometritis group, while only Parvimonas was significantly increased in the endometritis group in farm B (p < 0.05). Interestingly, the genus Burkholderia and Serratia were found only in the endometritis sows from farm A. Burkholderia was the most dominant genus found in endometritis sows and was confirmed by full-length 16S rRNA analysis using PacBio sequencing.This work was funded by the National Key Basic Research Program (grant number 2016YFD0500606); the Construction of the First Class Universities (Subject) and Special Development Guidance Special Fund (grant number K5174960); and the Fundamental Research Funds for the Central Universities, SCUT (grant number D2170320)

    Association Between agr Type, Virulence Factors, Biofilm Formation and Antibiotic Resistance of Staphylococcus aureus Isolates From Pork Production

    No full text
    Livestock-associated Staphylococcus aureus colonization and/or infections exist in pigs and people in frequent contact with pigs. In this study, a total of 130 S. aureus isolates obtained from different stages of pork production were subjected to antimicrobial susceptibility, biofilm formation, as well as PCR screening to identify virulence genes, and the accessory gene regulator alleles (agr). Among all 130 S. aureus isolates, 109 (83.8%, 109/130) isolates were positive for agr. All swine farms isolates belonged to agr IV, whereas S. aureus isolated from slaughterhouse and retail indicated diverse agr types. All isolates exhibited biofilm formation ability, and raw meat isolates (belonging to agr I) exhibited a greater ability to form strong biofilms than swine farms isolates (belonging to agr IV). agr-positive isolates were associated with more virulence genes than agr-negative isolates. Most biofilm-producing isolates were positive for microbial surface component recognizing adhesive matrix molecule (MSCRAMM), capsule type and ica group genes. The results illustrate a significant association between the prevalence rate of MSCRAMM, capsule type and ica group genes among isolates producing weak, moderate and strong biofilms. The high prevalence of resistance to ciprofloxacin, gentamicin, tetracycline, clarithromycin, clindamycin, and trimethoprim-sulfamethoxazole were mainly observed in moderate and weak biofilm producers. Our findings indicate that S. aureus isolates from pork production displayed diverse molecular ecology

    Circular RNA hsa_circ_0051040 Promotes Hepatocellular Carcinoma Progression by Sponging miR-569 and Regulating ITGAV Expression

    No full text
    Accumulating evidence has demonstrated the roles of circular RNAs (circRNAs) in hepatocellular carcinoma (HCC); however, their roles in HCC need to be further studied. Through high-throughput human circRNA microarray analysis of HCC and adjacent normal tissues, we identified hsa_circ_0051040 as a novel candidate circRNA for the diagnosis and treatment of HCC. In this study, we found that hsa_circ_0051040 was overexpressed in HCC tissues and cell lines and that its expression was correlated with poor prognosis. Knockdown of hsa_circ_0051040 inhibited the migration, invasion, and proliferation of HCC cells in vitro and in vivo, whereas overexpression of hsa_circ_0051040 had the opposite effects. Moreover, our data demonstrated that hsa_circ_0051040 acted as a sponge for miR-569 to regulate ITGAV expression and induce EMT progression. Our findings indicated that hsa_circ_0051040 promotes HCC development and progression by sponging miR-569 to increase ITGAV expression. Thus, hsa_circ_0051040 is a good candidate as a therapeutic target
    corecore