2,590 research outputs found
Intravitreal injection of proinsulin-loaded microspheres delays photoreceptor cell death and vision loss in the rd10 mouse model of retinitis pigmentosa
9 p.-6 fig.PURPOSE. The induction of proinsulin expression by transgenesis or intramuscular gene therapy has been shown previously to retard retinal degeneration in mouse and rat models of retinitis pigmentosa (RP), a group of inherited conditions that result in visual impairment. We investigated whether intraocular treatment with biodegradable poly (lactic-co-glycolic) acid microspheres (PLGA-MS) loaded with proinsulin has cellular and functional neuroprotective effects in the retinaMETHODS. Experiments were performed using the Pde6brd10 mouse model of RP.
Methionylated human recombinant proinsulin (hPI) was formulated in PLGA-MS, which
were administered by intravitreal injection on postnatal days (P) 14 to 15. Retinal
neuroprotection was assessed at P25 by electroretinography, and by evaluating outer nuclear layer (ONL) cellular preservation. The attenuation of photoreceptor cell death by hPI was determined by TUNEL assay in cultured P22 retinas, as well as Akt phosphorylation by immunoblottingRESULTS. We successfully formulated hPI PLGA-MS to deliver the active molecule for several weeks in vitro. The amplitude of b-cone and mixed b-waves in electroretinographic recording was significantly higher in eyes injected with hPI-PLGA-MS compared to control eyes.Treatment with hPI-PLGA-MS attenuated photoreceptor cell loss, as revealed by comparing ONL thickness and the number of cell rows in this layer in treated versus untreated retinas. Finally, hPI prevented photoreceptor cell death and increased AktThr308 phosphorylation in organotypic cultured retinas.CONCLUSIONS. Retinal degeneration in the rd10 mouse was slowed by a single intravitreal injection of hPI-PLGA-MS. Human recombinant proinsulin elicited a rapid and effective neuroprotective effect when administered in biodegradable microspheres, which may constitute a future potentially feasible delivery method for proinsulin-based treatment of RP.Supported by Grants from the Spanish Ministerio de Ciencia e
Innovacion (MICINN) and Spanish Ministerio de EconomÍa y
Competitividad (MINECO), SAF2010-21879 (EJdlR and PdlV),
SAF2013-41059-R (FdP and EJdlR), and technical personnel
support from CIBERDEM, ISCIII, Madrid, SpainPeer reviewe
The 2HWC HAWC Observatory Gamma Ray Catalog
We present the first catalog of TeV gamma-ray sources realized with the
recently completed High Altitude Water Cherenkov Observatory (HAWC). It is the
most sensitive wide field-of-view TeV telescope currently in operation, with a
1-year survey sensitivity of ~5-10% of the flux of the Crab Nebula. With an
instantaneous field of view >1.5 sr and >90% duty cycle, it continuously
surveys and monitors the sky for gamma ray energies between hundreds GeV and
tens of TeV.
HAWC is located in Mexico at a latitude of 19 degree North and was completed
in March 2015. Here, we present the 2HWC catalog, which is the result of the
first source search realized with the complete HAWC detector. Realized with 507
days of data and represents the most sensitive TeV survey to date for such a
large fraction of the sky. A total of 39 sources were detected, with an
expected contamination of 0.5 due to background fluctuation. Out of these
sources, 16 are more than one degree away from any previously reported TeV
source. The source list, including the position measurement, spectrum
measurement, and uncertainties, is reported. Seven of the detected sources may
be associated with pulsar wind nebulae, two with supernova remnants, two with
blazars, and the remaining 23 have no firm identification yet.Comment: Submitted 2017/02/09 to the Astrophysical Journa
Observation of the Crab Nebula with the HAWC Gamma-Ray Observatory
The Crab Nebula is the brightest TeV gamma-ray source in the sky and has been
used for the past 25 years as a reference source in TeV astronomy, for
calibration and verification of new TeV instruments. The High Altitude Water
Cherenkov Observatory (HAWC), completed in early 2015, has been used to observe
the Crab Nebula at high significance across nearly the full spectrum of
energies to which HAWC is sensitive. HAWC is unique for its wide field-of-view,
nearly 2 sr at any instant, and its high-energy reach, up to 100 TeV. HAWC's
sensitivity improves with the gamma-ray energy. Above 1 TeV the
sensitivity is driven by the best background rejection and angular resolution
ever achieved for a wide-field ground array.
We present a time-integrated analysis of the Crab using 507 live days of HAWC
data from 2014 November to 2016 June. The spectrum of the Crab is fit to a
function of the form . The data is well-fit with values of
, , and
log when
is fixed at 7 TeV and the fit applies between 1 and 37 TeV. Study of the
systematic errors in this HAWC measurement is discussed and estimated to be
50\% in the photon flux between 1 and 37 TeV.
Confirmation of the Crab flux serves to establish the HAWC instrument's
sensitivity for surveys of the sky. The HAWC survey will exceed sensitivity of
current-generation observatories and open a new view of 2/3 of the sky above 10
TeV.Comment: Submitted 2017/01/06 to the Astrophysical Journa
All-particle cosmic ray energy spectrum measured by the HAWC experiment from 10 to 500 TeV
We report on the measurement of the all-particle cosmic ray energy spectrum
with the High Altitude Water Cherenkov (HAWC) Observatory in the energy range
10 to 500 TeV. HAWC is a ground based air-shower array deployed on the slopes
of Volcan Sierra Negra in the state of Puebla, Mexico, and is sensitive to
gamma rays and cosmic rays at TeV energies. The data used in this work were
taken from 234 days between June 2016 to February 2017. The primary cosmic-ray
energy is determined with a maximum likelihood approach using the particle
density as a function of distance to the shower core. Introducing quality cuts
to isolate events with shower cores landing on the array, the reconstructed
energy distribution is unfolded iteratively. The measured all-particle spectrum
is consistent with a broken power law with an index of prior to
a break at ) TeV, followed by an index of . The
spectrum also respresents a single measurement that spans the energy range
between direct detection and ground based experiments. As a verification of the
detector response, the energy scale and angular resolution are validated by
observation of the cosmic ray Moon shadow's dependence on energy.Comment: 16 pages, 11 figures, 4 tables, submission to Physical Review
Daily monitoring of TeV gamma-ray emission from Mrk 421, Mrk 501, and the Crab Nebula with HAWC
We present results from daily monitoring of gamma rays in the energy range
to TeV with the first 17 months of data from the High
Altitude Water Cherenkov (HAWC) Observatory. Its wide field of view of 2
steradians and duty cycle of % are unique features compared to other TeV
observatories that allow us to observe every source that transits over HAWC for
up to hours each sidereal day. This regular sampling yields
unprecedented light curves from unbiased measurements that are independent of
seasons or weather conditions. For the Crab Nebula as a reference source we
find no variability in the TeV band. Our main focus is the study of the TeV
blazars Markarian (Mrk) 421 and Mrk 501. A spectral fit for Mrk 421 yields a
power law index and
an exponential cut-off
TeV. For Mrk 501, we find an index and exponential cut-off TeV. The light curves for both sources show clear
variability and a Bayesian analysis is applied to identify changes between flux
states. The highest per-transit fluxes observed from Mrk 421 exceed the Crab
Nebula flux by a factor of approximately five. For Mrk 501, several transits
show fluxes in excess of three times the Crab Nebula flux. In a comparison to
lower energy gamma-ray and X-ray monitoring data with comparable sampling we
cannot identify clear counterparts for the most significant flaring features
observed by HAWC.Comment: 18 pages, 10 figures, accepted for publication in The Astrophysical
Journa
Measurement of the Crab Nebula Spectrum Past 100 TeV with HAWC
We present TeV gamma-ray observations of the Crab Nebula, the standard
reference source in ground-based gamma-ray astronomy, using data from the High
Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory. In this analysis we use
two independent energy-estimation methods that utilize extensive air shower
variables such as the core position, shower angle, and shower lateral energy
distribution. In contrast, the previously published HAWC energy spectrum
roughly estimated the shower energy with only the number of photomultipliers
triggered. This new methodology yields a much improved energy resolution over
the previous analysis and extends HAWC's ability to accurately measure
gamma-ray energies well beyond 100 TeV. The energy spectrum of the Crab Nebula
is well fit to a log parabola shape with emission up to at least 100 TeV. For the first
estimator, a ground parameter that utilizes fits to the lateral distribution
function to measure the charge density 40 meters from the shower axis, the
best-fit values are
=(2.350.04)10 (TeV cm
s), =2.790.02, and
=0.100.01. For the second estimator, a neural
network which uses the charge distribution in annuli around the core and other
variables, these values are
=(2.310.02)10 (TeV cm
s), =2.730.02, and
=0.060.010.02. The first set of uncertainties are statistical;
the second set are systematic. Both methods yield compatible results. These
measurements are the highest-energy observation of a gamma-ray source to date.Comment: published in Ap
Very high energy particle acceleration powered by the jets of the microquasar SS 433
SS 433 is a binary system containing a supergiant star that is overflowing
its Roche lobe with matter accreting onto a compact object (either a black hole
or neutron star). Two jets of ionized matter with a bulk velocity of
extend from the binary, perpendicular to the line of sight, and
terminate inside W50, a supernova remnant that is being distorted by the jets.
SS 433 differs from other microquasars in that the accretion is believed to be
super-Eddington, and the luminosity of the system is erg
s. The lobes of W50 in which the jets terminate, about 40 pc from the
central source, are expected to accelerate charged particles, and indeed radio
and X-ray emission consistent with electron synchrotron emission in a magnetic
field have been observed. At higher energies (>100 GeV), the particle fluxes of
rays from X-ray hotspots around SS 433 have been reported as flux
upper limits. In this energy regime, it has been unclear whether the emission
is dominated by electrons that are interacting with photons from the cosmic
microwave background through inverse-Compton scattering or by protons
interacting with the ambient gas. Here we report TeV -ray observations
of the SS 433/W50 system where the lobes are spatially resolved. The TeV
emission is localized to structures in the lobes, far from the center of the
system where the jets are formed. We have measured photon energies of at least
25 TeV, and these are certainly not Doppler boosted, because of the viewing
geometry. We conclude that the emission from radio to TeV energies is
consistent with a single population of electrons with energies extending to at
least hundreds of TeV in a magnetic field of ~micro-Gauss.Comment: Preprint version of Nature paper. Contacts: S. BenZvi, B. Dingus, K.
Fang, C.D. Rho , H. Zhang, H. Zho
VAMOS: a Pathfinder for the HAWC Gamma-Ray Observatory
VAMOS was a prototype detector built in 2011 at an altitude of 4100m a.s.l.
in the state of Puebla, Mexico. The aim of VAMOS was to finalize the design,
construction techniques and data acquisition system of the HAWC observatory.
HAWC is an air-shower array currently under construction at the same site of
VAMOS with the purpose to study the TeV sky. The VAMOS setup included six water
Cherenkov detectors and two different data acquisition systems. It was in
operation between October 2011 and May 2012 with an average live time of 30%.
Besides the scientific verification purposes, the eight months of data were
used to obtain the results presented in this paper: the detector response to
the Forbush decrease of March 2012, and the analysis of possible emission, at
energies above 30 GeV, for long gamma-ray bursts GRB111016B and GRB120328B.Comment: Accepted for pubblication in Astroparticle Physics Journal (20 pages,
10 figures). Corresponding authors: A.Marinelli and D.Zaboro
- …