11 research outputs found
A comprehensive platform for the analysis of ubiquitin-like protein modifications using in vivo biotinylation
Post-translational modification by ubiquitin and ubiquitin-like proteins (UbLs) is fundamental for maintaining protein homeostasis. Efficient isolation of UbL conjugates is hampered by multiple factors, including cost and specificity of reagents, removal of UbLs by proteases, distinguishing UbL conjugates from interactors, and low quantities of modified substrates. Here we describe bioUbLs, a comprehensive set of tools for studying modifications in Drosophila and mammals, based on multicistronic expression and in vivo biotinylation using the E. coli biotin protein ligase BirA. While the bioUbLs allow rapid validation of UbL conjugation for exogenous or endogenous proteins, the single vector approach can facilitate biotinylation of most proteins of interest. Purification under denaturing conditions inactivates deconjugating enzymes and stringent washes remove UbL interactors and non-specific background. We demonstrate the utility of the method in Drosophila cells and transgenic flies, identifying an extensive set of putative SUMOylated proteins in both cases. For mammalian cells, we show conjugation and localization for many different UbLs, with the identification of novel potential substrates for UFM1. Ease of use and the flexibility to modify existing vectors will make the bioUbL system a powerful complement to existing strategies for studying this important mode of protein regulation
Somatic Mosaicism of the HTT Cag Repeat in Intermediate Allele Carriers with Neurocognitive Symptoms Compatible with Huntington Disease
We aimed to determine the possible role of CAG somatic expansions on the clinical expression of intermediate allele (IA) carriers of the HTT gene, responsible for Huntington disease (HD). We performed exon one sequencing analysis of the HTT gene on peripheral blood DNA in a Spanish cohort of asymptomatic IA carriers (n=55), symptomatic IA carriers (n=86) and HD subjects (n=124). Additionally, we investigated different brain regions of an individual carrying an HTT allele with 33 CAGs, with neurocognitive symptoms. Linear regression models were used to analyse the association between CAG length and age with somatic mosaicism. Symptomatic IA carriers presented with motor (80%), cognitive (20%) and/or behavioural (22%) signs, and an average age of onset of 58.7 years±18.6. Somatic mosaicism is CAG- and age-dependent in alleles of CAG≥27 CAGs, with b=0.04 (95% CI: 0.035-0.046), and b=0.001 (95% CI: 0.001-0.002), respectively, for all IAs. There was no statistical difference between HTT somatic mosaicism in symptomatic vs asymptomatic IA carriers (p=0.066). Somatic expansions of +1 and +2 CAGs were detected in the brain of the individual with 33 CAGs, with the highest expansion ratio observed in the putamen, where up to 10% of the DNA molecules underwent somatic expansion. In conclusion, somatic CAG expansions observed in blood cannot explain, overall, the neurocognitive signs of IA carriers. However, somatic instability occurs in IAs, which changes with CAG number and age; therefore, the presence of cells in the brain that express up to +2 CAGs may be important when considering the phenotypes of those alleles close to the pathological threshold
Somatic CAG repeat instability in intermediate alleles of the HTT gene and its potential association with a clinical phenotype.
Huntington disease (HD) is a neurodegenerative disorder caused by ≥36 CAGs in the HTT gene. Intermediate alleles (IAs) (27-35 CAGs) are not considered HD-causing, but their potential association with neurocognitive symptoms remains controversial. As HTT somatic CAG expansion influences HD onset, we hypothesised that IAs are somatically unstable, and that somatic CAG expansion may drive phenotypic presentation in some IA carriers. We quantified HTT somatic CAG expansions by MiSeq sequencing in the blood DNA of 164 HD subjects and 191 IA (symptomatic and control) carriers, and in the brain DNA of a symptomatic 33 CAG carrier. We also performed genotype-phenotype analysis. The phenotype of symptomatic IA carriers was characterised by motor (85%), cognitive (27%) and/or behavioural (29%) signs, with a late (58.7 ± 18.6 years), but not CAG-dependent, age at onset. IAs displayed somatic expansion that were CAG and age-dependent in blood DNA, with 0.4% and 0.01% of DNA molecules expanding by CAG and year, respectively. Somatic expansions of +1 and +2 CAGs were detected in the brain of the individual with 33 CAGs, with the highest expansion frequency in the putamen (10.3%) and the lowest in the cerebellum (4.8%). Somatic expansion in blood DNA was not different in symptomatic vs. control IA carriers. In conclusion, we show that HTT IAs are somatically unstable, but we found no association with HD-like phenotypes. It is plausible, however, that some IAs, close to the HD pathological threshold and with a predisposing genetic background, could manifest with neurocognitive symptoms