44,440 research outputs found

    Returning magnetic flux in sunspot penumbrae

    Full text link
    We study the presence of reversed polarity magnetic flux in sunspot penumbra. We applied a new regularized method to deconvolve spectropolarimetric data observed with the spectropolarimeter SP onboard Hinode. The new regularization is based on a principal component decomposition of the Stokes profiles. The resulting Stokes profiles were inverted to infer the magnetic field vector using SIR. We find, for the first time, reversed polarity fields at the border of many bright penumbral filaments in the whole penumbra.Comment: 5 pages, 5 figures, accepted for publication in A&A Letter

    Electroweak non-resonant corrections to top pair production close to threshold

    Get PDF
    The production of W+ W- b bbar from e+ e- collisions at energies close to the t tbar threshold is dominated by the resonant process with a nearly on-shell t tbar intermediate state. The W b pairs in the final state can also be reached through the decay of off-shell tops or through background processes containing no or only single top quarks. This non-resonant production starts to contribute at NLO to the W+ W- b bbar total cross section in the non-relativistic power-counting v ~ alpha_s ~ sqrt(alpha_EW). The NLO non-resonant corrections presented in this talk represent the non-trivial NLO electroweak corrections to the e+ e- -> W+ W- b bbar cross section in the top anti-top resonance region. In contrast to the QCD corrections which have been calculated (almost) up to NNNLO, the parametrically larger NLO electroweak contributions have not been completely known so far, but are mandatory for the required accuracy at a future linear collider. We consider the total cross section of the e+ e- -> W+ W- b bbar process and additionally implement cuts on the invariant masses of the W+ b and W- bbar pairs.Comment: Talk presented at the 35th International Conference of High Energy Physics - ICHEP2010, July 22-28, 2010, Paris France. 4 pages, 2 figure

    Nonautonomous Hamiltonian Systems and Morales-Ramis Theory I. The Case x¨=f(x,t)\ddot{x}=f(x,t)

    Full text link
    In this paper we present an approach towards the comprehensive analysis of the non-integrability of differential equations in the form x¨=f(x,t)\ddot x=f(x,t) which is analogous to Hamiltonian systems with 1+1/2 degree of freedom. In particular, we analyze the non-integrability of some important families of differential equations such as Painlev\'e II, Sitnikov and Hill-Schr\"odinger equation. We emphasize in Painlev\'e II, showing its non-integrability through three different Hamiltonian systems, and also in Sitnikov in which two different version including numerical results are shown. The main tool to study the non-integrability of these kind of Hamiltonian systems is Morales-Ramis theory. This paper is a very slight improvement of the talk with the almost-same title delivered by the author in SIAM Conference on Applications of Dynamical Systems 2007.Comment: 15 pages without figures (19 pages and 6 figures in the published version

    Stationary configurations of two extreme black holes obtainable from the Kinnersley-Chitre solution

    Full text link
    Stationary axisymmetric systems of two extreme Kerr sources separated by a massless strut, which arise as subfamilies of the well-known Kinnersley-Chitre solution, are studied. We present explicit analytical formulas for the individual masses and angular momenta of the constituents and establish the range of the parameters for which such systems can be regarded as describing black holes. The mass-angular momentum relations and the interaction force in the black-hole configurations are also analyzed. Furthermore, we construct a charging generalization of the Kinnersley-Chitre metric and, as applications of the general formulas obtained, discuss two special cases describing a pair of identical co- and counterrotating extreme Kerr-Newman black holes kept apart by a conical singularity. From our analysis it follows in particular that the equality m2a2e2=0m^2-a^2-e^2=0 relating the mass, angular momentum per unit mass and electric charge of a single Kerr-Newman extreme black hole is no longer verified by the analogous extreme black-hole constituents in binary configurations.Comment: final version revised according to referee's suggestion

    Implications of the Measured Image Size for the Radio Afterglow of GRB 030329

    Full text link
    We use data on the image size of the radio afterglow of GRB 030329 (Taylor et al. 2004) to constrain the physical parameters of this explosion. Together with the observed broad band spectrum, this data over-constrains the physical parameters, thus enabling to test different GRB jet models for consistency. We consider two extreme models for the lateral spreading of the jet: model 1 with relativistic expansion in the local rest frame, and model 2 with little lateral expansion as long as the jet is highly relativistic. We find that both models are consistent with the data for a uniform external medium, while for a stellar wind environment model 1 is consistent with the data but model 2 is disfavored by the data. Our derivations can be used to place tighter constraints on the dynamics and structure of GRB jets in future afterglows, following a denser monitoring campaign for the temporal evolution of their image size.Comment: 12 pages, 6 figues; submitted to Ap
    corecore