99 research outputs found

    Nonadiabatic Dynamics: A Semiclassical Approach

    Get PDF
    Nonadiabatic dynamics has been an essential part of quantum chemistry since the 1930’s. Nonadiabatic effects play a crucial role in photo-physical and photo-chemical reactions for both small and large molecules in both gas and condensed phases. Modeling dynamics of photoinduced reactions has been a new frontier of chemistry. Many dynamical phenomena, such as intersystem crossing, non-radiative relaxation, and charge energy transfer, require a nonadiabatic description which incorporates transitions between electronic states. In Chapter 2, the property of scattering region in the semiclassical limit is investigated. We suggest that a nuclear wavepacket close enough to the conical intersection will propagate ballistically in a straight line through the scattering region with distance λ+, the impact parameter, away from the conical intersection. Upon taking the semiclassical limit, we have proven that in a certain neighborhood of the conical intersection, the adiabatic propagation and ballistic propagation are both valid. The resulted complete propagator is governed by the semiclassical propagation along the reference path which connects the initial and final points, and an integration over the impact parameter, hence only depends on the initial and final classical states of the system. In Chapter 3, we identify the main differences between the effects of Kramers symmetry on the systems with even and odd number of electrons, the ways how the aforementioned symmetry affects the structure of the Conical Seams (CSs), and how it shows up in semiclassical propagation of nuclear wavepackets, crossing the CSs. We identify the topological invariants, associated with CSs, in three cases: even and odd number of electrons with time-reversal symmetry, as well as absence of the latter. We obtain asymptotically exact semiclassical analytical solutions for wavepackets scattered on a CS for all three cases, identify topological features in a non-trivial shape of the scattered wavepacket, and connect them to the topological invariants, associated with CSs. We argue that, due to robustness of topology, the non-trivial wavepacket structure is a topologically protected evidence of a wavepacket having passed through a CS, rather than a feature of a semiclassical approximation. In Chapter 4, we present, in detail, an algorithm based on Monte-Carlo sampling of the semiclassical time-dependent wavefunction, that involves running simple surface hopping dynamics, followed by a post-processing step which adds little cost. The method requires only a few quantities from quantum chemistry calculations, can systematically be improved, and provides excellent agreement with exact quantum mechanical results. Here we show excellent agreement with exact solutions for scattering results of standard test problems. Additionally, we find that convergence of the wavefunction is controlled by complex valued phase factors, the size of the nonadiabatic coupling region, and the choice of sampling function. These results help in determining the range of applicability of the method, and provide a starting point for further improvement

    Tunable Interband Transitions in Twisted h-BN/Graphene Heterostructures

    Full text link
    In twisted h-BN/graphene heterostructures, the complex electronic properties of the fast-traveling electron gas in graphene are usually considered to be fully revealed. However, the randomly twisted heterostructures may also have unexpected transition behaviors, which may influence the device performance. Here, we study the twist angle-dependent coupling effects of h-BN/graphene heterostructures using monochromatic electron energy loss spectroscopy. We find that the moir\'e potentials alter the band structure of graphene, resulting in a redshift of the intralayer transition at the M-point, which becomes more pronounced up to 0.25 eV with increasing twist angle. Furthermore, the twisting of the Brillouin zone of h-BN relative to the graphene M-point leads to tunable vertical transition energies in the range of 5.1-5.6 eV. Our findings indicate that twist-coupling effects of van der Waals heterostructures should be carefully considered in device fabrications, and the continuously tunable interband transitions through the twist angle can serve as a new degree of freedom to design optoelectrical devices

    Locally advanced rectal cancer with dMMR/MSI-H may be excused from surgery after neoadjuvant anti-PD-1 monotherapy: a multiple-center, cohort study

    Get PDF
    ObjectiveExamine patients with locally advanced rectal cancer (LARC) with deficient mismatch repair (dMMR) or microsatellite instability-high (MSI-H) who received neoadjuvant immunotherapy (nIT), and compare the outcomes of those who chose a watch-and-wait (WW) approach after achieving clinical complete response (cCR) or near-cCR with those who underwent surgery and were confirmed as pathological complete response (pCR).MethodsLARC patients with dMMR/MSI-H who received nIT were retrospectively examined. The endpoints were 2-year overall survival (OS), 2-year disease-free survival (DFS), local recurrence (LR), and distant metastasis (DM). The efficacy of programmed cell death protein-1 (PD-1) inhibitor, immune-related adverse events (irAEs), surgery-related adverse events (srAEs), and enterostomy were also recorded.ResultsTwenty patients who received a PD-1 inhibitor as initial nIT were examined. Eighteen patients (90%) achieved complete response (CR) after a median of 7 nIT cycles, including 11 with pCR after surgery (pCR group), and 7 chose a WW strategy after evaluation as cCR or near-cCR (WW group). Both groups had median follow-up times of 25.0 months. Neither group had a case of LR or DM, and the 2-year DFS and OS in each group was 100%. The two groups had similar incidences of irAEs (P=0.627). In the pCR group, however, 2 patients (18.2%) had permanent colostomy, 3 (27.3%) had temporary ileostomy, and 2 (18.2%) had srAEs.ConclusionNeoadjuvant PD-1 blockade had high efficacy and led to a high rate of CR in LARC patients with dMMR/MSI-H. A WW strategy appears to be a safe and reliable option for these patients who achieve cCR or near-cCR after nIT

    Improving cooperation in peer-to-peer systems using social networks

    No full text
    Rational and selfish nodes in P2P systems usually lack effective incentives to cooperate, contributing to the increase of free-riders, and degrading the system performance. Various attacks such as whitewashing, collusion, and software cracking pose great challenges on distributed reputation management. To tackle these problems, we propose to build a social network on P2P system, and use the strength of social connections to facilitate transactions in P2P system. The ’ small world’ character of social networks makes it feasible for nodes to locate resources and conduct transactions while maintain limited local memory history. Such distributed memory combined by relationship between peers • constructs a powerful reputation management network, which could have better performance than shared history system and is more robust under various attacks. Our simulation and analysis show that the social network model can greatly incent cooperation in P2P networks and enormously reduce the memory cost. 1

    Trait-Based Models of Decomposition with Interspecific and Environmental Interactions

    No full text
    Most saprotrophic fungi are dominant decomposers, and they play a vital role in the carbon cycle and stability of ecosystem. Previous researchers examined that how traits and environments influence the decomposition rate(DR), but few studies last long enough to scale short-term results up to long-term trends. In this paper, we build several trait-based models of decomposition with interspecific and environmental interactions to describe both short- and long-term trends. First, we build the model of decomposition ratio versus time with covariates – hyphal extension ratio and moisture tolerance for each species. Second, we define Interspecific Interference Ratio (IIR) to reflect interactions between fungi species and rank the relative competitiveness based on Grey System Theory with four evaluation indices: hyphal extension rate, moisture niche width, the hyphal density and thermal niche width. Then, we predict the relative advantages and disadvantages for different species by IIR and analyze the impact of biodiversity. Finally, we perform sensitivity and robustness analysis of our models, which exhibits the wide prospects and a deeper understanding of the role of fungi in the ecosystem
    • …
    corecore