4 research outputs found

    Free-electron interactions with photonic GKP states: universal control and quantum error correction

    Full text link
    We show that the coherent interaction between free electrons and photons can be used for universal control of continuous-variable photonic quantum states in the form of Gottesman-Kitaev-Preskill (GKP) qubits. Specifically, we find that electron energy combs enable non-destructive measurements of the photonic state and can induce arbitrary gates. Moreover, a single electron interacting with multiple photonic modes can create highly entangled states such as Greenberger-Horne-Zeilinger states and cluster states of GKPs

    Coherently amplified ultrafast imaging in a free-electron interferometer

    Full text link
    Accessing the low-energy non-equilibrium dynamics of materials with simultaneous spatial and temporal resolutions has been a bold frontier of electron microscopy in recent years. One of the main challenges is the ability to retrieve extremely weak signals while simultaneously disentangling amplitude and phase information. Here, we present an algorithm-based microscopy approach that uses light-induced electron modulation to demonstrate the coherent amplification effect in electron imaging of optical near-fields. We provide a simultaneous time-, space-, and phase-resolved measurement in a micro-drum made from a hexagonal boron nitride membrane, visualizing the sub-cycle spatio-temporal dynamics of 2D polariton wavepackets therein. The phase-resolved measurement reveals vortex-anti-vortex singularities on the polariton wavefronts, together with an intriguing phenomenon of a traveling wave mimicking the amplitude profile of a standing wave. Our experiments show a 20-fold coherent amplification of the near-field signal compared to conventional electron near-field imaging, resolving peak field intensities of ~W/cm2 (field amplitude of few kV/m). As a result, our work opens a path toward spatio-temporal electron microscopy of biological specimens and quantum materials - exciting yet sensitive samples, which are currently difficult to investigate
    corecore