26 research outputs found

    SAW Device with Suppressed Parasitic Signal (WO002018206264A1)

    No full text
    In a SAW device comprises a SAW chip bearing a SAW transducer arranged within a first signal line parasitic signals due to higher harmonics of the operating frequency of the SAW devices are electrically eliminated by compensating means comprising at least one second signal line having means for producing a cancelling signal different in sign or phase to the parasitic signal, or a shunt line to electrically connect the SAW transducer to a back side metallization of the SAW chip.Dans un dispositif à ondes acoustiques de surface qui comprend une puce à ondes acoustiques de surface portant un transducteur à ondes acoustiques de surface agencé à l'intérieur d'un premier circuit de transmission, des signaux parasites dus à des harmoniques supérieures de la fréquence de fonctionnement des dispositifs à ondes acoustiques de un moyen de compensation comprenant au moins un second circuit de transmission ayant un moyen de production d'un signal d'annulation différent en termes de signe ou de phase par rapport au signal parasite, ou une ligne de dérivation pour connecter électriquement le transducteur à ondes acoustiques de surface à une métallisation côté arrière de la puce à ondes acoustiques de surface

    SAW-Vorrichtung mit unterdrücktem Parasitärsignal (DE102017110233A1)

    No full text
    In einer SAW-Vorrichtung, welche einen SAW-Chip umfasst, der einen SAW-Wandler aufweist, welcher innerhalb einer ersten Signalleitung angeordnet ist, werden Parasitärsignale infolge höherer Harmonischer der Betriebsfrequenz der SAW-Vorrichtungen durch Kompensationsmittel elektrisch beseitigt, welche zumindest eine zweite Signalleitung mit Mitteln zum Erzeugen eines Aufhebungssignals, das im Vorzeichen oder in der Phase vom Parasitärsignal verschieden ist, oder eine Nebenschlussleitung zum elektrischen Verbinden des SAW-Wandlers mit einer rückseitigen Metallisierung des SAW-Chips umfassen

    Efficient Analysis Tool for Coupled-SAWResonator Filters

    No full text
    The advantages of the coupled-mode (COM) formalism and the transmission-matrix approach are combined in order to create exact and computationally efficient analysis and synthesis tools for the design of coupled surface acoustic wave resonator filters. The models for the filter components, in particular gratings, interdigital transducers (IDTs) and multistrip couplers (MSCs), are based on the COM approach that delivers closed-form expressions. To determine the pertinent COM parameters, the COM differential equations are solved and the solution is compared with analytically derived expressions from the transmission-matrix approach and the Green's function method. The most important second-order effects, such as energy storage, propagation loss, and mechanical and electrical loading, are fully taken into account. As an example, a two-pole, acoustically coupled resonator filter at 914.5 MHz on AT quartz is investigated. Excellent agreement between theory and measurement is found

    Interaction of SAWs with resonating structures on the surface

    No full text
    A simple model is introduced that describes the interaction of surface acoustic waves (SAWs) with a 2D periodic array of objects on the surface that give rise to internal resonances. Such objects may be high-aspect ratio structures like micro-pillars fabricated of a material different from that of the substrate. The model allows for an approximate determination of the band structure for the acoustic modes in such systems. Results are presented for the dependence on structural parameters of a total bandgap in the non-radiative regime of a semi-infinite substrate, and it is shown how the frequency and radiation damping of vibrational modes can be determined that are associated with defects in the periodic 2D array

    Efficient Design Tool for SAW-Resonator Filters

    No full text
    The advantages of the coupling-of-modes (COM) formalism and the transmission-matrix approach are combined to create exact and computationally efficient analysis and synthesis CAD tools for the design of SAW-resonator filters. The models for the filter components, especially gratings, interdigital transducers (IDTs). and multistrip couplers (MSCs), are based on the COM approach, which delivers closed-form expressions. In order to determine the relevant COM parameters, the integrated COM differential equations are compared with analytically derived expressions from the transmission-matrix approach. The most important second-order effects such as energy storage, propagation loss and mechanical and electrical loading are fully taken into account. As an example, the authors investigate a two-pole, acoustically coupled resonator filter at 914.5 MHz on AT quartz. Excellent agreement between theory and measurement is found

    Rigorous COM and P-matrix approaches to the simulation of third-order intermodulation distortion and triple beat in SAW filters

    No full text
    In this work a set of nonlinear coupled COM equations at interacting frequencies is derived on the basis of nonlinear electro-elasticity. The formalism is presented with the aim of describing intermodulation distortion of third-order (IMD3) and triple beat. The resulting COM equations are translated to the P-matrix formalism, where care is taken to obtain the correct frequency dependence. The scheme depends on two frequency-independent constants for an effective third-order nonlinearity. One of these two constants is negligibly small in the systems considered here. The P-matrix approach is applied to single filters and duplexers on LiTaO 3 (YXl)/42° operating in different frequency ranges. Both IMD3 and triple beat show good agreement with measurement
    corecore