7 research outputs found

    The global research of artificial intelligence in lung cancer: a 20-year bibliometric analysis

    Get PDF
    BackgroundLung cancer (LC) is the second-highest incidence and the first-highest mortality cancer worldwide. Early screening and precise treatment of LC have been the research hotspots in this field. Artificial intelligence (AI) technology has advantages in many aspects of LC and widely used such as LC early diagnosis, LC differential classification, treatment and prognosis prediction.ObjectiveThis study aims to analyze and visualize the research history, current status, current hotspots, and development trends of artificial intelligence in the field of lung cancer using bibliometric methods, and predict future research directions and cutting-edge hotspots.ResultsA total of 2931 articles published between 2003 and 2023 were included, contributed by 15,848 authors from 92 countries/regions. Among them, China (40%) with 1173 papers,USA (24.80%) with 727 papers and the India(10.2%) with 299 papers have made outstanding contributions in this field, accounting for 75% of the total publications. The primary research institutions were Shanghai Jiaotong University(n=66),Chinese Academy of Sciences (n=63) and Harvard Medical School (n=52).Professor Qian Wei(n=20) from Northeastern University in China were ranked first in the top 10 authors while Armato SG(n=458 citations) was the most co-cited authors. Frontiers in Oncology(121 publications; IF 2022,4.7; Q2) was the most published journal. while Radiology (3003 citations; IF 2022, 19.7; Q1) was the most co-cited journal. different countries and institutions should further strengthen cooperation between each other. The most common keywords were lung cancer, classification, cancer, machine learning and deep learning. Meanwhile, The most cited papers was Nicolas Coudray et al.2018.NAT MED(1196 Total Citations).ConclusionsResearch related to AI in lung cancer has significant application prospects, and the number of scholars dedicated to AI-related research on lung cancer is continually growing. It is foreseeable that non-invasive diagnosis and precise minimally invasive treatment through deep learning and machine learning will remain a central focus in the future. Simultaneously, there is a need to enhance collaboration not only among various countries and institutions but also between high-quality medical and industrial entities

    Hybrid Reinforcement Learning for STAR-RISs: A Coupled Phase-Shift Model Based Beamformer

    Full text link
    A simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) assisted multi-user downlink multiple-input single-output (MISO) communication system is investigated. In contrast to the existing ideal STAR-RIS model assuming an independent transmission and reflection phase-shift control, a practical coupled phase-shift model is considered. Then, a joint active and passive beamforming optimization problem is formulated for minimizing the long-term transmission power consumption, subject to the coupled phase-shift constraint and the minimum data rate constraint. Despite the coupled nature of the phase-shift model, the formulated problem is solved by invoking a hybrid continuous and discrete phase-shift control policy. Inspired by this observation, a pair of hybrid reinforcement learning (RL) algorithms, namely the hybrid deep deterministic policy gradient (hybrid DDPG) algorithm and the joint DDPG & deep-Q network (DDPG-DQN) based algorithm are proposed. The hybrid DDPG algorithm controls the associated high-dimensional continuous and discrete actions by relying on the hybrid action mapping. By contrast, the joint DDPG-DQN algorithm constructs two Markov decision processes (MDPs) relying on an inner and an outer environment, thereby amalgamating the two agents to accomplish a joint hybrid control. Simulation results demonstrate that the STAR-RIS has superiority over other conventional RISs in terms of its energy consumption. Furthermore, both the proposed algorithms outperform the baseline DDPG algorithm, and the joint DDPG-DQN algorithm achieves a superior performance, albeit at an increased computational complexity

    Hybrid reinforcement learning for STAR-RISs: a coupled phase-shift model based beamformer

    No full text
    A simultaneous transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) assisted multi-user downlink multiple-input single-output (MISO) communication system is investigated. In contrast to the existing ideal STAR-RIS model assuming an independent transmission and reflection phase-shift control, a practical coupled phase-shift model is considered. Then, a joint active and passive beamforming optimization problem is formulated for minimizing the long-term transmission power consumption, subject to the coupled phase-shift constraint and the minimum data rate constraint. Despite the coupled nature of the phase-shift model, the formulated problem is solved by invoking a hybrid continuous and discrete phase-shift control policy. Inspired by this observation, a pair of hybrid reinforcement learning (RL) algorithms, namely the hybrid deep deterministic policy gradient (hybrid DDPG) algorithm and the joint DDPG & deep-Q network (DDPG-DQN) based algorithm are proposed. The hybrid DDPG algorithm controls the associated high-dimensional continuous and discrete actions by relying on the hybrid action mapping. By contrast, the joint DDPG-DQN algorithm constructs two Markov decision processes (MDPs) relying on an inner and an outer environment, thereby amalgamating the two agents to accomplish a joint hybrid control. Simulation results demonstrate that the STARRIShas superiority over other conventional RISs in terms of its energy consumption. Furthermore, both the proposed algorithms outperform the baseline DDPG algorithm, and the joint DDPGDQN algorithm achieves a superior performance, albeit at anincreased computational complexity

    3μm GaInNAs/GasAs Quantum Well Resonant Cavity Enhanced Photodetector

    No full text
    A 1.3μm GaInNAs resonant cavity enhanced (RCE) photodetector (PD) has been grown by molecular beam epitaxy (MBE) monolithically on (100) GaAs substrate using a home-made ion-removed dc-plasma cell as nitrogen source. A transfer matrix method was used to optimize the device structure. The absorption region is composed of three GaInNAs quantum wells separated by GaAs layers. Devices were isolated by etching 130μm-diameter mesas and filling polyamide into grooves. The maximal quantum efficiency of the device is about 12% at 1.293μm. Full width at half maximum (FWHM) is 5.8nm and 3dB bandwidth is 304MHz. Dark current is 2 * 10~(-11) A at zero bias voltage. Further improvement of the performance of the RCE PD can be obtained by optimizing of the structure design and MBE growth conditions
    corecore