52 research outputs found

    Calculation and Analysis of Two Level Traps Model in Polymeric Materials

    No full text
    Space charge formation in polymeric materials can cause some serious concern for design engineers as the electric field may severely be distorted, leading to part of the material being overstressed, resulting in material degradation and possibly premature failure at the worst. It is therefore important to understand charge generation, trapping, and detrapping processes in the material. Trap depths and concentration of materials are important as they are potentially related to microstructure of the material. Changes in these parameters may reflect aging taken place in the material. In the present paper, characteristics of charge trapping and detrapping in low density polyethylene (LDPE) under dc electric field have been investigated using the pulsed electroacoustic (PEA) technique. A simple trapping and detrapping model based on two trapping levels has been used to qualitatively explain the observation. Numerical simulation based on the above model has been carried out to extract parameters related to the material. It has been found that trap depths and concentration of both shallow and deep traps show significant differences for the sample with different periods of electric field application. Besides, the trap energy levels of these shallow and deep traps are compared with the values in literature to evaluate the model. The results indicate that trap depths and concentration of both shallow and deep traps may be used as aging markers as changes in the material will certainly affect trapping characteristics (trap depth and concentration)

    Characteristics of Pollen from Transgenic Lines of Apple Carrying the Exogenous CpTI Gene

    Get PDF
    AbstractIt is fundamental for gene transformation and ecosystem hazard evaluation to study the pollen characteristics of transgenic plants. In this research, the characteristics of pollen from 7- or 8-year-old transgenic apple plants carrying an exogenous CpTI gene were analyzed. The results showed that there was no significant difference in terms of size, morphology, or exine ornamentation between the pollen of the transgenic plants and the non-transgenic control. However, the transgenic plants had more abnormal pollen grains. Of the 13 transgenic lines tested, 12 had a significantly lower amount of pollen and six exhibited a significantly lower germination rate when cultured in vitro. The pollen viability of three transgenic lines was determined, with two showing significantly lower viability than the control. The transgenic Gala apple pollen grains germinated normally via controlled pollination on Fuji apple stigmas. However, the pollen tubes extended relatively slowly during the middle and late development stages, and another 8h were needed to reach the ovules compared with the control. The gibberellic acid concentration in transgenic Gala apple flowers was lower than in the non-transgenic control during all development stages tested. The abscisic acid concentration in the transgenic flowers was lower during the pink stage, and higher during the ball and fully open stages. Microscopic observation of the anther structure showed no difference. The tapetum of the pollen sac wall in transgenic plants decomposed late and affected pollen grain development, which could be one of the reasons for the lower number of pollen grains and poor viability in the transgenic plants

    A space charge trapping model and its parameters in polymeric material

    No full text
    In this paper, characteristics of charge trapping and detrapping in low density polyethylene under dc electric field are investigated using the pulsed electroacoustic technique. It is found that the charge decay shows very different features for the samples with different periods of applied electric field. A simple trapping and detrapping model based on two trapping levels is proposed to qualitatively explain the observation. At the same time, numerical simulation based on the above model is carried out to extract parameters (trap depths and concentration related to the material. It is found that the space charge decaying in the first few hundred seconds, corresponding to the fast changing part of the slope, is trapped in a shallow trap with a depth in a range between 0.77 and 0.81 eV, and the trapped charge density reaches (1.168–1.553) ×1019 m-3 in the sample volume measured. At the same time, the space charge that decays at longer time, corresponding to the slower part of the slope, is trapped in a deep trap with a depth in a range of 0.96 and 1.01 eV, and the trapped charge density is (1.194–4.615) ×1018 m-3. The trap depths and charge densities of both shallow and deep traps may increase with ageing, and the parameters of two energy wells can be used as an indication of the material aging

    Design of Temperature Fluctuation Test Platform Based on Radiation Heat Transfer

    No full text
    The optical characteristics of the space science detectors are very sensitive to the temperature fluctuation. In order to study the effect of it, a method to simulate the temperature fluctuation was put forward in this paper, and the feasibility of this method was verified numerically. A radiation disturbance was artificially applied at a certain distance from the test platform, so that the surface temperature of the platform changed periodically with the radiation heater. The results show that the radiation heat transfer disturbance could produce a temperature fluctuation on the test platform, which provides a reliable theoretical support for the time-varying temperature control system

    Design of Temperature Fluctuation Test Platform Based on Radiation Heat Transfer

    No full text
    The optical characteristics of the space science detectors are very sensitive to the temperature fluctuation. In order to study the effect of it, a method to simulate the temperature fluctuation was put forward in this paper, and the feasibility of this method was verified numerically. A radiation disturbance was artificially applied at a certain distance from the test platform, so that the surface temperature of the platform changed periodically with the radiation heater. The results show that the radiation heat transfer disturbance could produce a temperature fluctuation on the test platform, which provides a reliable theoretical support for the time-varying temperature control system

    cDNA-AFLP analysis reveals altered gene expression profiles involved in juice sac granulation in pummelo (Citrus grandis)

    Get PDF
    Citrus fruits produced in China are often affected by granulation. Granulation is an altered physiological state of citrus fruits occurring usually before harvest but whose underlying mechanisms remain elusive. In this study, cDNA-AFLP technology enabled the identification of 116 granulation-associated genes in pummelo (C. grandis) juice sacs. Differentially expressed transcript-derived fragments (TDFs) were shown to be mainly involved in biological regulation and signal transduction, carbohydrate and energy metabolism, nucleic acid, protein metabolism, stress responses, and cell metabolism. Therefore, granulation in pummelo juice sacs seems to involve the following alterations: (1) changes in hormone levels; (2) activation of metabolic pathways related to ATP and sugar synthesis to produce more energy; (3) nucleic acid accumulation and increased protein degradation; (4) activation of stress-responsive metabolic pathways; (5) accelerated juice sac senescence. Our findings provide an overview of differential responses occurring at the transcriptional level in granulated juice sacs, thus revealing new insights into the adaptive mechanisms underlying this altered physiological state in 'Guanximiyou' pummelo (C. grandis) juice sacs

    The Impact of Cross-Linking Effect on the Space Charge Characteristics of Cross-Linked Polyethylene with Different Degrees of Cross-Linking under Strong Direct Current Electric Field

    No full text
    Cross-linked polyethylene (XLPE) obtained by the crossing-linking reaction of polyethylene (PE) can greatly enhance the mechanical properties and other properties of PE, which makes XLPE widely applied in the field of electric power engineering. However, the space charges can distort the distribution of the electrical field strength in the XLPE applied in the insulation materials, which can shorten the service life of the insulation materials. Therefore, the space charge characteristics of XLPE under the strong direct current (DC) electric field have been the focus of scholars and engineers all over the world. This article has studied the impact of the cross-linking effect on the space charge characteristics of XLPE with different degrees of cross-linking. For this issue, we used dicumyl peroxide (DCP) as the cross-linking agent and low-density polyethylene (LDPE) as the base material for the preparation of samples. Besides, the space charge distribution was measured by the pulsed electro-acoustic method (PEA). In addition, the average charge density as a characteristic parameter was introduced into the experiment, which was used to quantitatively analyze the impact of the cross-linking effect on the space charge characteristics of XLPE with different degrees of cross-linking. Meanwhile, we also explained the impact of the cross-linking effect on XLPE with different degrees of cross-linking from a microscopic point of view. Ultimately, some important conclusions can be obtained. For instance, the cross-linking effect significantly increases the threshold electrical field strength of XLPE, and as the content of cross-linking agent increases, the threshold electrical field strength increases at first and then decreases, and the threshold electrical field strength reaches the maximum value when the content of the cross-linking agent is 1.0% or 2.1%. Besides, the cross-linking effect introduces negative charge traps into the LDPE and increases the densities of the deeper charge traps, and so on. In addition, we have also analyzed the average charge density, and we have summarized the theoretical model of the average charge decay, namely, Q ( t ) = Q 0 + α e − t β , which is very effective for explaining the dissipation characteristics (more conclusive contents can be seen in the conclusion section of this article)

    Effect of moisture content on the production and partitioning of furfural in oil-paper insulation

    No full text

    Modeling on Regional Atmosphere-Soil-Land Plant Carbon Cycle Dynamic System

    No full text
    This paper establishes a nonlinear carbon cycle model based on the analysis of the carbon flux relationship among the atmosphere cycle, soil cycle and land cycle. By using nonlinear dynamics method, we examine the regional carbon cycle evolution along with the temporal evolution of the regional carbon flux. A neural network has been employed to identify the parameters of the proposed model, accordingly. In the numerical study, we propose the atmosphere-soil-land cycle model for Nanjing city of China. Then, the carbon cycle evolution of Nanjing has been simulated with the given model and actual data
    • …
    corecore