4 research outputs found

    Synthesis and characterization of thiourea

    No full text
    Herein, a simple and effective method for the preparation of thiourea using a nucleophilic substitution reaction is reported. Urea and Lawesson’s reagent were used as the raw materials to prepare thiourea via a one-step method involving the sulfuration reaction, and the reaction mechanism was analyzed. The effect of the reaction time, reaction temperature, and mass ratio of the raw materials on the yield of thiourea were investigated.The most beneficial conditions used for the reaction were determined to be: Reaction time = 3.5 h, reaction temperature = 75°C, and mass ratio of urea to Lawesson’s reagent = 2:1. Under these optimal conditions, the average yield of thiourea over five replicate experiments was 62.37%. Characterization using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and thermogravimetric analysis (TGA) showed that the as-synthesized substance was thiourea. Our synthetic method has the advantages of high yield, mild reaction conditions and simplicity

    Synthesis and characterization of thiourea

    No full text
    Herein, a simple and effective method for the preparation of thiourea using a nucleophilic substitution reaction is reported. Urea and Lawesson’s reagent were used as the raw materials to prepare thiourea via a one-step method involving the sulfuration reaction, and the reaction mechanism was analyzed. The effect of the reaction time, reaction temperature, and mass ratio of the raw materials on the yield of thiourea were investigated.The most beneficial conditions used for the reaction were determined to be: Reaction time = 3.5 h, reaction temperature = 75°C, and mass ratio of urea to Lawesson’s reagent = 2:1. Under these optimal conditions, the average yield of thiourea over five replicate experiments was 62.37%. Characterization using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and thermogravimetric analysis (TGA) showed that the as-synthesized substance was thiourea. Our synthetic method has the advantages of high yield, mild reaction conditions and simplicity

    Study on Electromagnetic Performance of La0.5Sr0.5CoO3/Al2O3 Ceramic with Metal Periodic Structure at X-Band

    No full text
    A radar absorbing material (RAM) is designed by combining the La0.5Sr0.5CoO3/Al2O3 ceramic and the metal periodic structure. The phase constitution and the microscopic morphology of the La0.5Sr0.5CoO3/Al2O3 ceramic are examined, respectively. The electrical properties and magnetic properties of the La0.5Sr0.5CoO3/Al2O3 ceramic are also measured at the temperature range of 25~500 °C. Based on the experimental and simulation results, the changes in the reflection loss along with the structure parameters of RAM are analyzed at 500 °C. The analytical results show that the absorption property of the RAM increases with the increase in the temperature. When the thickness of the La0.5Sr0.5CoO3/Al2O3 ceramic is 1.5 mm, a reflection loss <−10 dB can be obtained in the frequency range from approximately 8.2 to 16 GHz. More than 90% microwave energy can be consumed in the RAM, which may be applied in the high temperature environment
    corecore