22 research outputs found

    Nanocalorimetric Evidence for Nematic Superconductivity in the Doped Topological Insulator Sr0.1_{0.1}Bi2_{2}Se3_{3}

    Full text link
    Spontaneous rotational-symmetry breaking in the superconducting state of doped Bi2Se3\mathrm{Bi}_2\mathrm{Se}_3 has attracted significant attention as an indicator for topological superconductivity. In this paper, high-resolution calorimetry of the single-crystal Sr0.1Bi2Se3\mathrm{Sr}_{0.1}\mathrm{Bi}_2\mathrm{Se}_3 provides unequivocal evidence of a two-fold rotational symmetry in the superconducting gap by a \emph{bulk thermodynamic} probe, a fingerprint of nematic superconductivity. The extremely small specific heat anomaly resolved with our high-sensitivity technique is consistent with the material's low carrier concentration proving bulk superconductivity. The large basal-plane anisotropy of Hc2H_{c2} is attributed to a nematic phase of a two-component topological gap structure η⃗=(η1,η2)\vec{\eta} = (\eta_{1}, \eta_{2}) and caused by a symmetry-breaking energy term δ(∣η1∣2−∣η2∣2)Tc\delta (|\eta_{1}|^{2} - |\eta_{2}|^{2}) T_{c}. A quantitative analysis of our data excludes more conventional sources of this two-fold anisotropy and provides the first estimate for the symmetry-breaking strength δ≈0.1\delta \approx 0.1, a value that points to an onset transition of the second order parameter component below 2K
    corecore