37,700 research outputs found
Cooperative Multi-Cell Block Diagonalization with Per-Base-Station Power Constraints
Block diagonalization (BD) is a practical linear precoding technique that
eliminates the inter-user interference in downlink multiuser multiple-input
multiple-output (MIMO) systems. In this paper, we apply BD to the downlink
transmission in a cooperative multi-cell MIMO system, where the signals from
different base stations (BSs) to all the mobile stations (MSs) are jointly
designed with the perfect knowledge of the downlink channels and transmit
messages. Specifically, we study the optimal BD precoder design to maximize the
weighted sum-rate of all the MSs subject to a set of per-BS power constraints.
This design problem is formulated in an auxiliary MIMO broadcast channel (BC)
with a set of transmit power constraints corresponding to those for individual
BSs in the multi-cell system. By applying convex optimization techniques, this
paper develops an efficient algorithm to solve this problem, and derives the
closed-form expression for the optimal BD precoding matrix. It is revealed that
the optimal BD precoding vectors for each MS in the per-BS power constraint
case are in general non-orthogonal, which differs from the conventional
orthogonal BD precoder design for the MIMO-BC under one single sum-power
constraint. Moreover, for the special case of single-antenna BSs and MSs, the
proposed solution reduces to the optimal zero-forcing beamforming (ZF-BF)
precoder design for the weighted sum-rate maximization in the multiple-input
single-output (MISO) BC with per-antenna power constraints. Suboptimal and
low-complexity BD/ZF-BF precoding schemes are also presented, and their
achievable rates are compared against those with the optimal schemes.Comment: accepted in JSAC, special issue on cooperative communications on
cellular networks, June 201
Burrowing behaviour of signal crayfish, Pacifastacus leniusculus (Dana), in the River Great Ouse, England
Observations were made on crayfish burrows in five locations on the Great Ouse River. The burrow densities and the relative abundance of crayfish were observed. Also, laboratory experiments were carried out in order to study the characteristics and mechanisms of burrowing
Secrecy Wireless Information and Power Transfer in OFDMA Systems
In this paper, we consider simultaneous wireless information and power
transfer (SWIPT) in orthogonal frequency division multiple access (OFDMA)
systems with the coexistence of information receivers (IRs) and energy
receivers (ERs). The IRs are served with best-effort secrecy data and the ERs
harvest energy with minimum required harvested power. To enhance physical-layer
security and yet satisfy energy harvesting requirements, we introduce a new
frequency-domain artificial noise based approach. We study the optimal resource
allocation for the weighted sum secrecy rate maximization via transmit power
and subcarrier allocation. The considered problem is non-convex, while we
propose an efficient algorithm for solving it based on Lagrange duality method.
Simulation results illustrate the effectiveness of the proposed algorithm as
compared against other heuristic schemes.Comment: To appear in Globecom 201
- …