924 research outputs found

    Super-resolution mapping of wetland inundation from remote sensing imagery based on integration of back-propagation neural network and genetic algorithm

    No full text
    Mapping the spatio-temporal characteristics of wetland inundation has an important significance to the study of wetland environment and associated flora and fauna. High temporal remote sensing imagery is widely used for this purpose with the limitations of relatively low spatial resolutions. In this study, a novel method based on integration of back-propagation neural network (BP) and genetic algorithm (GA), so-called IBPGA, is proposed for super-resolution mapping of wetland inundation (SMWI) from multispectral remote sensing imagery. The IBPGA-SMWI algorithm is developed, including the fitness function and integration search strategy. IBPGA-SMWI was evaluated using Landsat TM/ETM + imagery from the Poyanghu wetland in China and the Macquarie Marshes in Australia. Compared with traditional SMWI methods, IBPGA-SMWI consistently achieved more accurate super-resolution mapping results in terms of visual and quantitative evaluations. In comparison with GA-SMWI, IBPGA-SMWI not only improved the accuracy of SMWI, but also accelerated the convergence speed of the algorithm. The sensitivity analysis of IBPGA-SMWI in relation to standard crossover rate, BP crossover rate and mutation rate was also carried out to discuss the algorithm performance. It is hoped that the results of this study will enhance the application of median-low resolution remote sensing imagery in wetland inundation mapping and monitoring, and ultimately support the studies of wetland environment.This paper was supported by the National Natural Science Foundation of China (Grant No. 41371343 and Grant No. 41001255) and the scholarship provided by the China Scholarship Council (Grant No. 201308420290)

    Enhancing Generalizable 6D Pose Tracking of an In-Hand Object with Tactile Sensing

    Full text link
    While holding and manipulating an object, humans track the object states through vision and touch so as to achieve complex tasks. However, nowadays the majority of robot research perceives object states just from visual signals, hugely limiting the robotic manipulation abilities. This work presents a tactile-enhanced generalizable 6D pose tracking design named TEG-Track to track previously unseen in-hand objects. TEG-Track extracts tactile kinematic cues of an in-hand object from consecutive tactile sensing signals. Such cues are incorporated into a geometric-kinematic optimization scheme to enhance existing generalizable visual trackers. To test our method in real scenarios and enable future studies on generalizable visual-tactile tracking, we collect a real visual-tactile in-hand object pose tracking dataset. Experiments show that TEG-Track significantly improves state-of-the-art generalizable 6D pose trackers in both synthetic and real cases

    Synthesis of CdTe quantum dot-conjugated CC49 and their application for in vitro imaging of gastric adenocarcinoma cells

    Get PDF
    The purpose of this experiment was to investigate the visible imaging of gastric adenocarcinoma cells in vitro by targeting tumor-associated glycoprotein 72 (TAG-72) with near-infrared quantum dots (QDs). QDs with an emission wavelength of about 550 to 780 nm were conjugated to CC49 monoclonal antibodies against TAG-72, resulting in a probe named as CC49-QDs. A gastric adenocarcinoma cell line (MGC80-3) expressing high levels of TAG-72 was cultured for fluorescence imaging, and a gastric epithelial cell line (GES-1) was used for the negative control group. Transmission electron microscopy indicated that the average diameter of CC49-QDs was 0.2 nm higher compared with that of the primary QDs. Also, fluorescence spectrum analysis indicated that the CC49-QDs did not have different optical properties compared to the primary QDs. Immunohistochemical examination and in vitro fluorescence imaging of the tumors showed that the CC49-QDs probe could bind TAG-72 expressed on MGC80-3 cells

    Urban expansion and agricultural land loss in China: A multiscale perspective

    Get PDF
    China’s rapid urbanization has contributed to a massive agricultural land loss that could threaten its food security. Timely and accurate mapping of urban expansion and urbanization-related agricultural land loss can provide viable measures to be taken for urban planning and agricultural land protection. In this study, urban expansion in China from 2001 to 2013 was mapped using the nighttime stable light (NSL), normalized difference vegetation index (NDVI), and water body data. Urbanization-related agricultural land loss during this time period was then evaluated at national, regional, and metropolitan scales by integrating multiple sources of geographic data. The results revealed that China’s total urban area increased from 31,076 km2 in 2001 to 80,887 km2 in 2013, with an average annual growth rate of 13.36%. This widespread urban expansion consumed 33,080 km2 of agricultural land during this period. At a regional scale, the eastern region lost 18,542 km2 or 1.2% of its total agricultural land area. At a metropolitan scale, the Shanghai–Nanjing–Hangzhou (SNH) and Pearl River Delta (PRD) areas underwent high levels of agricultural land loss with a decrease of 6.12% (4728 km2) and 6.05% (2702 km2) of their total agricultural land areas, respectively. Special attention should be paid to the PRD, with a decline of 13.30% (1843 km2) of its cropland. Effective policies and strategies should be implemented to mitigate urbanization-related agricultural land loss in the context of China’s rapid urbanization

    Method of determining cosmological parameter ranges with samples of candles with an intrinsic distribution

    Full text link
    In this paper, the effect of the intrinsic distribution of cosmological candles is investigated. We find that, in the case of a narrow distribution, the deviation of the observed modulus of sources from the expected central value could be estimated within a ceratin range. We thus introduce a lower and upper limits of χ2\chi ^{2}, χmin2\chi_{\min}^{2} and χmax2 \chi_{\max}^{2}, to estimate cosmological parameters by applying the conventional minimizing χ2\chi ^{2} method. We apply this method to a gamma-ray burst (GRB) sample as well as to a combined sample including this GRB sample and an SN Ia sample. Our analysis shows that: a) in the case of assuming an intrinsic distribution of candles of the GRB sample, the effect of the distribution is obvious and should not be neglected; b) taking into account this effect would lead to a poorer constraint of the cosmological parameter ranges. The analysis suggests that in the attempt of constraining the cosmological model with current GRB samples, the results tend to be worse than what previously thought if the mentioned intrinsic distribution does exist.Comment: 6 pages,4 figures,1 tables.Data updated. Main conclusion unchange

    Thyroid autoimmunity and adverse pregnancy outcomes: A multiple center retrospective study

    Get PDF
    BackgroundThe relationship between thyroid autoimmunity (TAI) and adverse pregnancy outcomes is disputable, and their dose-dependent association have not been fully clarified.ObjectiveTo investigate the association and dose-dependent effect of TAI with multiple maternal and fetal-neonatal complications.MethodsThis study is a multi-center retrospective cohort study based on singleton pregnancies of three medical college hospitals from July 2013 to October 2021. The evolution of thyroid function parameters in TAI and not TAI women were described, throughout pregnancy. The prevalences of maternal and fetal-neonatal complications were compared between the TAI and control group. Logistic regression was performed to study the risk effects and dose-dependent effects of thyroid autoantibodies on pregnancy complications, with adjustment of maternal age, BMI, gravidity, TSH concentrations, FT4 concentrations and history of infertility.ResultsA total of 27408 participants were included in final analysis, with 5342 (19.49%) in the TAI group and 22066 (80.51%) in control group. TSH concentrations was higher in TAI women in baseline and remain higher before the third trimester. Positive thyroid autoantibodies were independently associated with higher risk of pregnancy-induced hypertension (OR: 1.215, 95%CI: 1.026-1.439), gestational diabetes mellitus (OR: 1.088, 95%CI: 1.001-1.183), and neonatal admission to NICU (OR: 1.084, 95%CI: 1.004-1.171). Quantitative analysis showed that increasing TPOAb concentration was correlated with higher probability of pregnancy-induced hypertension, and increasing TGAb concentration was positively correlated with pregnancy-induced hypertension, small for gestational age and NICU admission. Both TPOAb and TGAb concentration were negatively associated with neonatal birthweight.ConclusionThyroid autoimmunity is independently associated with pregnancy-induced hypertension, gestational diabetes mellitus, neonatal lower birthweight and admission to NICU. Dose-dependent association were found between TPOAb and pregnancy-induced hypertension, and between TGAb and pregnancy-induced hypertension, small for gestational age and NICU admission

    Path-dependent selection—a bridge between natural selection and neutral selection

    Get PDF
    Path-dependent selection follows the premise of complete symmetry in the neutral theory of selection; mutations in the natural world are entirely based on statistical randomness, lack directionality, and thus do not exhibit differences in fitness. Under specific spatiotemporal conditions, however, evolutionary positive feedback effects resulting from the specific environment will result in the breakdown of symmetry pre-assumed in neutral selection. This evolutionary positive feedback, a recursive effect, is of Lamarckian active selection or inheritance of acquired characteristics. The mutual antagonistic interactions between the positive selection of recursive effect and the passive selection under natural selection pressure of the environment in multidimensional conditions will result in evolutionary paths. Path-dependent selection proposes that the evolutionary process of organisms is a selection process based on path frequencies rather than an increase in fitness, with a strong reliance on the paths that it has taken in the past. Because of the existence of transition probabilities between different paths or within the same path (such as plasmid transfer, transposons, and function transfer in ecological interactions), path formation will exhibit acceleration or deceleration effects, explaining Gould’s principles such as punctuated equilibrium. When environmental selection pressure is weak or zero, most or all paths (like neutral selection outcomes) may be possible. The frequencies of different paths will differentiate as environmental selection increases, and the paths with higher frequencies will be more easily selected. When the evolutionary process or history has no impact on the evolution of the paths themselves (a static, equilibrium state), the path with the highest frequency is the shortest or optimal path used by evolution—a result consistent with Darwin’s theory of natural selection. Path-dependent selection, which draws inspiration from modern physics, particularly path integral methods in quantum mechanics, may provide us with a new perspective and approach to explaining the evolution of life
    corecore