795 research outputs found

    Surface-edge state and half quantized Hall conductance in topological insulators

    Get PDF
    We propose a surface-edge state theory for half quantized Hall conductance of surface states in topological insulators. The gap opening of a single Dirac cone for the surface states in a weak magnetic field is demonstrated. We find a new surface state resides on the surface edges and carries chiral edge current, resulting in a half-quantized Hall conductance in a four-terminal setup. We also give a physical interpretation of the half quantized conductance by showing that this state is the product of splitting of a boundary bound state of massive Dirac fermions which carries a conductance quantum

    Quantum percolation in quantum spin Hall antidot systems

    Get PDF
    We study the influences of antidot-induced bound states on transport properties of two- dimensional quantum spin Hall insulators. The bound statesare found able to induce quantum percolation in the originally insulating bulk. At some critical antidot densities, the quantum spin Hall phase can be completely destroyed due to the maximum quantum percolation. For systems with periodic boundaries, the maximum quantum percolationbetween the bound states creates intermediate extended states in the bulk which is originally gapped and insulating. The antidot in- duced bound states plays the same role as the magnetic field inthe quantum Hall effect, both makes electrons go into cyclotron motions. We also draw an analogy between the quantum percolation phenomena in this system and that in the network models of quantum Hall effect

    Electric field modulation of topological order in thin film semiconductors

    Get PDF
    We propose a method that can consecutively modulate the topological orders or the number of helical edge states in ultrathin film semiconductors without a magnetic field. By applying a staggered periodic potential, the system undergoes a transition from a topological trivial insulating state into a non-trivial one with helical edge states emerging in the band gap. Further study demonstrates that the number of helical edge state can be modulated by the amplitude and the geometry of the electric potential in a step-wise fashion, which is analogous to tuning the integer quantum Hall conductance by a megntic field. We address the feasibility of experimental measurement of this topological transition.Comment: 4 pages, 4 figure

    Surface and Edge States in Topological Semi-metals

    Get PDF
    We study the topologically non-trivial semi-metals by means of the 6-band Kane model. Existence of surface states is explicitly demonstrated by calculating the LDOS on the material surface. In the strain free condition, surface states are divided into two parts in the energy spectrum, one part is in the direct gap, the other part including the crossing point of surface state Dirac cone is submerged in the valence band. We also show how uni-axial strain induces an insulating band gap and raises the crossing point from the valence band into the band gap, making the system a true topological insulator. We predict existence of helical edge states and spin Hall effect in the thin film topological semi-metals, which could be tested with future experiment. Disorder is found to significantly enhance the spin Hall effect in the valence band of the thin films

    Topological Anderson Insulator

    Full text link
    Disorder plays an important role in two dimensions, and is responsible for striking phenomena such as metal insulator transition and the integral and fractional quantum Hall effects. In this paper, we investigate the role of disorder in the context of the recently discovered topological insulator, which possesses a pair of helical edge states with opposing spins moving in opposite directions and exhibits the phenomenon of quantum spin Hall effect. We predict an unexpected and nontrivial quantum phase termed "topological Anderson insulator," which is obtained by introducing impurities in a two-dimensional metal; here disorder not only causes metal insulator transition, as anticipated, but is fundamentally responsible for creating extended edge states. We determine the phase diagram of the topological Anderson insulator and outline its experimental consequences.Comment: 4 pages, 4 figure

    Localization and Mobility Gap in Topological Anderson Insulator

    Get PDF
    It has been proposed that disorder may lead to a new type of topological insulator, called topological Anderson insulator (TAI). Here we examine the physical origin of this phenomenon. We calculate the topological invariants and density of states of disordered model in a super-cell of 2-dimensional HgTe/CdTe quantum well. The topologically non-trivial phase is triggered by a band touching as the disorder strength increases. The TAI is protected by a mobility gap, in contrast to the band gap in conventional quantum spin Hall systems. The mobility gap in the TAI consists of a cluster of non-trivial subgaps separated by almost flat and localized bands.Comment: 8 pages, 7 figure

    The ground state of a mixture of two species of fermionic atoms in 1D optical lattice

    Full text link
    In this paper, we investigate the ground state properties of a mixture of two species of fermionic atoms in one-dimensional optical lattice, as described by the asymmetric Hubbard model. The quantum phase transition from density wave to phase separation is investigated by studying both the corresponding charge order parameter and quantum entanglement. A rigorous proof that even for the single hole doping case, the density wave is unstable to the phase separation in the infinite U limit, is given. Therefore, our results are quite instructive for both on-going experiments on strongly correlated cold-atomic systems and traditional heavy fermion systems.Comment: 9 pages, 10 figures, extended versio

    Poly[aqua­(μ11-4,6-dihy­droxy­benzene-1,3-disulfonato)­dipotassium]

    Get PDF
    In the title salt, [K2(C6H4O8S2)(H2O)]n, both K+ ions exhibit a seven-coordination with K—O bond lengths in the range 2.6600 (14) to 3.0522 (16) Å. One K+ ion is coordinated by seven O atoms from the sulfonate and phenolic hy­droxy groups of six 4,6-dihy­droxy­benzene-1,3-disulfonate (L 2−) anions while the other K+ ion is coordinated by six O atoms from the sulfonate and phenolic hy­droxy groups of five L 2− anions and one water O atom. The L 2− anion exhibits chelating–bridging multidentate coordination to potassium, resulting in the formation of a cross-linked three-dimensional network
    corecore