15,129 research outputs found
Cooperative Precoding with Limited Feedback for MIMO Interference Channels
Multi-antenna precoding effectively mitigates the interference in wireless
networks. However, the resultant performance gains can be significantly
compromised in practice if the precoder design fails to account for the
inaccuracy in the channel state information (CSI) feedback. This paper
addresses this issue by considering finite-rate CSI feedback from receivers to
their interfering transmitters in the two-user multiple-input-multiple-output
(MIMO) interference channel, called cooperative feedback, and proposing a
systematic method for designing transceivers comprising linear precoders and
equalizers. Specifically, each precoder/equalizer is decomposed into inner and
outer components for nulling the cross-link interference and achieving array
gain, respectively. The inner precoders/equalizers are further optimized to
suppress the residual interference resulting from finite-rate cooperative
feedback. Further- more, the residual interference is regulated by additional
scalar cooperative feedback signals that are designed to control transmission
power using different criteria including fixed interference margin and maximum
sum throughput. Finally, the required number of cooperative precoder feedback
bits is derived for limiting the throughput loss due to precoder quantization.Comment: 23 pages; 5 figures; this work was presented in part at Asilomar 2011
and will appear in IEEE Trans. on Wireless Com
Cooperative Feedback for Multi-Antenna Cognitive Radio Networks
Cognitive beamforming (CB) is a multi-antenna technique for efficient
spectrum sharing between primary users (PUs) and secondary users (SUs) in a
cognitive radio network. Specifically, a multi-antenna SU transmitter applies
CB to suppress the interference to the PU receivers as well as enhance the
corresponding SU-link performance. In this paper, for a
multiple-input-single-output (MISO) SU channel coexisting with a
single-input-single-output (SISO) PU channel, we propose a new and practical
paradigm for designing CB based on the finite-rate cooperative feedback from
the PU receiver to the SU transmitter. Specifically, the PU receiver
communicates to the SU transmitter the quantized SU-to-PU channel direction
information (CDI) for computing the SU transmit beamformer, and the
interference power control (IPC) signal that regulates the SU transmission
power according to the tolerable interference margin at the PU receiver. Two CB
algorithms based on cooperative feedback are proposed: one restricts the SU
transmit beamformer to be orthogonal to the quantized SU-to-PU channel
direction and the other relaxes such a constraint. In addition, cooperative
feedforward of the SU CDI from the SU transmitter to the PU receiver is
exploited to allow more efficient cooperative feedback. The outage
probabilities of the SU link for different CB and cooperative
feedback/feedforward algorithms are analyzed, from which the optimal
bit-allocation tradeoff between the CDI and IPC feedback is characterized.Comment: 26 pages; to appear in IEEE Trans. Signal Processin
Cooperative Feedback for MIMO Interference Channels
Multi-antenna precoding effectively mitigates the interference in wireless
networks. However, the precoding efficiency can be significantly degraded by
the overhead due to the required feedback of channel state information (CSI).
This paper addresses such an issue by proposing a systematic method of
designing precoders for the two-user multiple-input-multiple-output (MIMO)
interference channels based on finite-rate CSI feedback from receivers to their
interferers, called cooperative feedback. Specifically, each precoder is
decomposed into inner and outer precoders for nulling interference and
improving the data link array gain, respectively. The inner precoders are
further designed to suppress residual interference resulting from finite-rate
cooperative feedback. To regulate residual interference due to precoder
quantization, additional scalar cooperative feedback signals are designed to
control transmitters' power using different criteria including applying
interference margins, maximizing sum throughput, and minimizing outage
probability. Simulation shows that such additional feedback effectively
alleviates performance degradation due to quantized precoder feedback.Comment: 5 pages; submitted to IEEE ICC 201
Health Claims Regulation and Welfare
Regulation (EC) No 1924/2006, 20 December 2006, requires functional foods manufacturers operating in Europe to provide evidence that the health claims reported on the packaging are truthful. However, most applications reviewed by the European Food Safety Authority (EFSA) have been rejected, leaving food manufacturers with the option of either selling products deprived of their claims or discontinuing their production. This paper analyzes changes in welfare (both producers’ and consumers’) that would occur if the implementation of Reg. (EC) No 1924/2006 resulted in a large-scale health-claim de-labeling of functional food products. To that end, we use one year (2007) of monthly scanner data of sales of conventional and functional yogurt in the Italian market and a discrete-choice random coefficient logit demand model which accounts for consumers’ heterogeneity using the MPEC algorithm developed by Dube et al. (2009) to improve numerical efficiency and accuracy, to assess the issue. Preliminary results show that both producers and consumers can be severely impacted if reporting health-claims on functional products is not allowed; as our results indicate that consumers’ welfare losses are twice as large than producers’ a loosening of EFSA’s requirements might be required to avoid such losses.Health claims regulation, EFSA, welfare, random coefficients, MPEC., Agricultural and Food Policy, Demand and Price Analysis, Industrial Organization, Marketing, Q18, L66, M38,
- …