8,124 research outputs found

    Modeling and Detecting False Data Injection Attacks against Railway Traction Power Systems

    Get PDF
    Modern urban railways extensively use computerized sensing and control technologies to achieve safe, reliable, and well-timed operations. However, the use of these technologies may provide a convenient leverage to cyber-attackers who have bypassed the air gaps and aim at causing safety incidents and service disruptions. In this paper, we study false data injection (FDI) attacks against railways' traction power systems (TPSes). Specifically, we analyze two types of FDI attacks on the train-borne voltage, current, and position sensor measurements - which we call efficiency attack and safety attack -- that (i) maximize the system's total power consumption and (ii) mislead trains' local voltages to exceed given safety-critical thresholds, respectively. To counteract, we develop a global attack detection (GAD) system that serializes a bad data detector and a novel secondary attack detector designed based on unique TPS characteristics. With intact position data of trains, our detection system can effectively detect the FDI attacks on trains' voltage and current measurements even if the attacker has full and accurate knowledge of the TPS, attack detection, and real-time system state. In particular, the GAD system features an adaptive mechanism that ensures low false positive and negative rates in detecting the attacks under noisy system measurements. Extensive simulations driven by realistic running profiles of trains verify that a TPS setup is vulnerable to the FDI attacks, but these attacks can be detected effectively by the proposed GAD while ensuring a low false positive rate.Comment: IEEE/IFIP DSN-2016 and ACM Trans. on Cyber-Physical System

    Implementation of packaged integrated antenna with embedded front end for Bluetooth applications

    No full text
    The design, integration and realization of system in enhanced package approach towards fully functional system level integration by using a compact Bluetooth USB dongle as the demonstrator is presented here. The integration was done on FR4 substrates, which is totally compatible with today’s printed circuit board manufacturing capability. A commercially available Bluetooth integrated chip was chosen as the chipset of our demonstrator, and a package integrated antenna together with an embedded front end completes the system in package integration. The front end developed here is based on an embedded meander line combline filter and an embedded transformer balun. The filter has a 35% area reduction when compared with the classical combline filter and similar performance. The balun has the coils distributed on three layers that minimized the board area needed it and optimizes the performances. The proposed packaged integrated antenna approach is successfully demonstrated here and the new module shows excellent performance when compared with a commercial solution, surpassing the normal Bluetooth class II dongle range which is up to 10 m and increasing the module range up to 120 m without an extra power amplifier

    Can a workspace help to overcome the query formulation problem in image retrieval?

    Get PDF
    We have proposed a novel image retrieval system that incorporates a workspace where users can organise their search results. A task-oriented and user-centred experiment has been devised involving design professionals and several types of realistic search tasks. We study the workspace’s effect on two aspects: task conceptualisation and query formulation. A traditional relevance feedback system serves as baseline. The results of this study show that the workspace is more useful with respect to both of the above aspects. The proposed approach leads to a more effective and enjoyable search experience
    corecore