96 research outputs found

    Expression of the SOCS family in human chronic wound tissues: Potential implications for SOCS in chronic wound healing

    Get PDF
    Cytokines play important roles in the wound healing process through various signalling pathways. The JAK-STAT pathway is utilised by most cytokines for signal transduction and is regulated by a variety of molecules, including suppressor of cytokine signalling (SOCS) proteins. SOCS are associated with inflammatory diseases and have an impact on cytokines, growth factors and key cell types involved in the wound‑healing process. SOCS, a negative regulator of cytokine signalling, may hold the potential to regulate cytokine‑induced signalling in the chronic wound‑healing process. Wound edge tissues were collected from chronic venous leg ulcer patients and classified as non-healing and healing wounds. The expression pattern of seven SOCSs members, at the transcript and protein level, were examined in these tissues using qPCR and immunohistochemistry. Significantly higher levels of SOCS3 (P=0.0284) and SOCS4 (P=0.0376) in non-healing chronic wounds compared to the healing/healed chronic wounds were observed at the transcript level. Relocalisation of SOCS3 protein in the non-healing wound environment was evident in the investigated chronic biopsies. Thus, the results show that the expression of SOCS transcript indicated that SOCS members may act as a prognostic biomarker of chronic wound

    Epithelial protein lost in neoplasm-α (EPLIN-α) is a potential prognostic marker for the progression of epithelial ovarian cancer

    Get PDF
    Epithelial protein lost in neoplasm-α (EPLIN-α) is a cytoskeletal protein whose expression is often lost or is aberrant in cancerous cells and tissues and whose loss is believed to be involved in aggressive phenotypes. This study examined this molecule in human epithelial ovarian tissues and investigated the cellular impact of EPLIN-α on ovarian cancer cells (EOC), SKOV3 and COV504. The expression of EPLIN-α in human ovarian tissues and EOC was assessed at both the mRNA and protein levels using reverse transcription-PCR (RT-PCR) and immunohistochemistry, respectively. In vitro assays for cellular matrix adhesion and migration (confirmed by an electrical cell substrate impedance sensing (ECIS) based method), invasion and cell growth were employed in order to assess the biological influence of EPLIN-α expression on EOC cells. Immunohistochemical analysis of ovarian cancer samples demonstrated that only a small number expressed EPLIN-α protein. Downregulation of EPLIN-α protein in EOC cell lines increased the growth, invasion, adhesion and migration in vitro. This EPLIN-α downregulation may have a prognostic value. From these data, we conclude that downregulation of EPLIN-α may be associated with poorer patient prognosis, and that this molecule appears to play a tumour suppressor role by inhibition of EOC growth and migration

    Expression of hepatocyte growth factor-like protein in human wound tissue and its biological functionality in human keratinocytes

    Get PDF
    Hepatocyte growth factor-like protein (HGFl) and its receptor, Recepteur d'Origine Nantais (RON), have been implicated in the development of wound chronicity. HGFl and RON expression was detected in acute wound tissue, chronic wound tissue and in normal skin using quantitative polymerase chain reaction (Q-PCR). HGFl and RON expression was also assessed in chronic healing and chronic non-healing wound tissues using Q-PCR and immunohistochemical staining. Expression was similarly detected in the HaCaT immortalized human keratinocyte cell line using reverse transcription polymerase chain reaction (RT-PCR). rhHGFl was used to assess the impact of this molecule on HaCaT cell functionality using in vitro growth assays and electric cell-substrate impendence sensing (ECIS) migration assays. HGFl and RON transcript expression were significantly increased in acute wound tissue compared to chronic wound tissue and were also elevated, though non-significantly, in comparison to normal skin. Minimal expression was seen in both healing and non-healing chronic wounds. Treatment of HaCaT cells with rhHGFl had no effect on growth rates but did enhance cell migration. This effect was abolished by the addition of a phospholipase C gamma (PLCγ) small molecule inhibitor. The increased expression of HGFl and RON in acute, healing wounds and the pro-migratory effect of HGFl in an in vitro human keratinocyte model, may indicate a role for HGFl in active wound healing

    The clinical significance and impact of interleukin 15 on keratinocyte cell growth and migration

    Get PDF
    Chronic wounds represent a significant burden to health services and are associated with patient morbidity. Novel methods to diagnose and/or treat problematic wounds are needed. Interleukin (IL)-15 is a cytokine involved in a number of biological processes and disease states such as inflammation, healing and cancer progression. The current study explores the expression profile of IL-15 and IL-15 receptor α (IL-15Rα) in chronic wounds and its impact on keratinocytes. IL-15 and IL-15Rα expression were examined in healing and non-healing chronic wounds using qPCR and immunohistochemical analysis. The impact of recombinant IL-15 (rhIL-15) on human adult low calcium temperature (HaCaT) keratinocyte growth and migratory potential was further examined. IL-15 transcript expression was slightly, though non-significantly elevated in healing chronic wounds compared with non-healing chronic wounds. IL-15 protein staining was minimal in both subtypes of chronic wounds. By contrast, IL-15Rα transcript and protein expression were both observed to be enhanced in non-healing chronic wounds compared with healing chronic wounds. The treatment of HaCaT cells with rhIL-15 generally enhanced cell growth and promoted migration. Analysis with small molecule inhibitors suggested that the pro-migratory effect of rhIL-15 may be associated with ERK, AKT, PLCγ and FAK signalling. IL-15 may promote healing traits in keratinocytes and the differential expression of IL-15Rα is observed in chronic wounds. Together, this may imply a complex role for this interleukin in wound healing

    Increased expression of Psoriasin is correlated with poor prognosis of bladder transitional cell carcinoma by promoting invasion and proliferation

    Get PDF
    Psoriasin, otherwise known as S100A7, is a member of the S100 protein family. With the key function of binding calcium, it is able to regulate a range of cellular functions. Altered Psoriasin expression is associated with poor clinical outcomes in several solid cancers. The present study aimed to examine the implication of Psoriasin in bladder cancer (BC). Expression of Psoriasin was examined in BC cell lines using PCR. Immunohistochemical (IHC) staining of Psoriasin was performed on a bladder disease spectrum tissue array. Plasmids were constructed to effectively knockdown and overexpress Psoriasin in BC cells and further utilized for in vitro BC cellular function assays. Association between Psoriasin expression and survival of patients with BC was evaluated using Kaplan‑Meier survival analysis. Psoriasin was revealed to be expressed by both bladder epithelia and cancer cells as determined by IHC. Increased expression of Psoriasin was significantly correlated with a poor overall BC patient survival. Overexpression of Psoriasin in the EJ138 cell line increased cellular proliferation, adhesion and invasion, whereas knockdown exhibited the opposite effect on cellular functions in RT112 cells. Matrix metalloprotease (MMP)9 appeared to be the most affected of the three MMPs examined in these two BC cell lines. The analysis revealed a positive correlation in BC tumours between Psoriasin and MMP9. Overall, high Psoriasin expression was correlated with poor overall survival in BC patients and promoted invasiveness of BC cells via upregulation of MMPs. Psoriasin possesses certain prognostic and therapeutic potential in BC which requires further exploration

    Heat shock protein 27 is a potential indicator for response to YangZheng XiaoJi and chemotherapy agents in cancer cells

    Get PDF
    Heat shock protein 27 (HSP27) is a member of the heat shock protein family which has been linked to tumour progression and, most interestingly, to chemotherapy resistance in cancer patients. The present study examined the potential interplay between HSP27 and YangZheng XiaoJi, a traditional Chinese medicine used in cancer treatment. A range of cell lines from different tumour types including pancreatic, lung, gastric, colorectal, breast, prostate and ovarian cancer (both wild-type and resistant) were used. Levels and activation of HSP27 and its potential associated signalling pathways were evaluated by protein array and western blotting. Knockdown of HSP27 in cancer cells was achieved using siRNA. Localisation and co-localisation of HSP27 and other proteins were carried out by immunofluorescence. Cell growth and migration were evaluated in their response to a range of chemotherapeutic agents. The present study first identified, by way of protein array, that YangZheng XiaoJi was able to inhibit the phosphorylation of HSP27 protein in cancer cells. We further demonstrated that HSP27, which is co-localised with caspase-9, can be blocked from localising in focal adhesions and co-localising with caspase-9 by YangZheng XiaoJi. The study also demonstrated that YangZheng XiaoJi was able to sensitise cancer cells including those cells that were resistant to chemotherapy, to chemotherapeutic agents. Finally, knocking down HSP27 markedly reduced the migration of cancer cells and increased the sensitivity of cancer cells to the inhibitory effect on cellular migration by YangZheng XiaoJi. YangZheng XiaoJi can act as an agent in first sensitising cancer cells to chemotherapy and secondly to overcome, to some degree, chemoresistance when used in an appropriate fashion in patients who have active HSP2

    The effects of anesthetics on recurrence and metastasis of cancer, and clinical implications

    Get PDF
    Surgical resection of the primary tumor may enhance the metastasis and recurrence of cancer. The reaction of patients to surgery includes changes of the immune system, the inflammatory system and the neuroendocrine system. In the perioperative period, anesthetics are used both for anesthesia and analgesia. There are several studies showing that the progression of cancer can be influenced by many kinds of anesthetics, although most of these studies are preclinical and thus have not yet influenced clinical recommendations. This review summarizes recent studies regarding the effects of anesthetics on metastasis and recurrence of cancer

    The clinical and biological implications of the focal adhesion kinase pathway in ShenLingLan mediated suppression of cellular migration of ovarian cancer cells

    Get PDF
    The incidence of ovarian cancer in the UK has increased by almost twenty percent since the 1970’s and the majority of cases are not diagnosed until the late stages, when metastasis is more likely to have occurred. Focal Adhesion Kinase (FAK) is one of the key protein complexes which is integral to cell migration and has been linked to a variety of solid tumours. ShenLingLan (SLDM) is a traditional herbal medicine which has been formulated for the treatment of solid tumours. This study aimed to establish the impact of SLDM on FAK in ovarian cancer cells in vitro and transcript levels of FAK in an ovarian cancer cohort. FAK and paxillin phosphorylation events stimulated by SLDM treatment were identified using a Kinexus™ antibody based protein array. The impact of SLDM on cell attachment and migration was evaluated using Electric cell-substrate impedance sensing (ECIS), whilst the changes in focal adhesion complex localisation were assessed using immunofluorescence. In an ovarian cancer cohort, differences in FAK and paxillin transcript levels were assessed against key clinical parameters such as differentiation, stage and survival outcome. SLDM treatment of ovarian cancer cells in vitro resulted in the suppression of FAK and paxillin phosphorylation at several sites, which appeared to manifest as decreased cellular attachment and migration in a range of immortalised ovarian cancer cells. Increased FAK and paxillin transcript copies were observed in high grade and poorly differentiated ovarian tumours as well as in tumours from patients with ovarian cancer related incidence. SLDM has a profound effect on the migratory and adhesive properties of ovarian cancer cells, potentially via inhibitory effects on the activation of the FAK pathway, which is aberrant in clinical ovarian cancers

    Pattern of expression of CCN family members Cyr61, CTGF and NOV in human acute and chronic wounds

    Get PDF
    The CCN family is a group of extremely cysteine-rich proteins that are found within the extracellular matrix and are comprised of cysteine-rich 61 (Cyr61/CCN1), connective tissue growth factor (CTGF/CCN 2) and nephroblastoma overexpressed (NOV/CCN3). Collectively, these proteins stimulate mitosis, adhesion, apoptosis, extracellular matrix production, growth arrest and migration, and regulate angiogenesis, tumour growth, placentation, implantation, embryogenesis and endochondral ossification. Despite such diverse activity, CCN protein function has not been explored in human wounds and healing. In the present study, we investigated the expression of these proteins in samples of normal, acute and chronic wounds using immunohistochemical staining and real-time quantitative RT-PCR. Statistical analysis was performed using the Fisher's exact test. Our results showed that, although all CCN proteins were present in normal, acute and chronic wounds, their expression levels differed, particularly in the case of connective tissue growth factor (CTGF), for which significantly reduced levels were found in chronic wounds compared to acute wounds (p<0.002). Thus, the lack of CTGF in wound tissues may contribute to the abnormal healing of clinical wounds. This suggests that CCN proteins may play an important role in human tissue wound healing. This further suggests that human wound healing may be promoted by manipulating the levels of this protein

    Growth differentiation factor-9 expression is inversely correlated with an aggressive behaviour in human bladder cancer cells

    Get PDF
    Growth differentiation factor-9 (GDF-9) is a family member of bone morphogenetic proteins (BMPs), which belong to the TGF-β superfamily. There has been a recent surge of interest in the role of growth differentiation factors and other BMPs in the development and spread of cancer. However, the role of GDF-9 in bladder cancer remains unknown. The present study investigated the expression of GDF-9 in normal and malignant human bladder tissue and its molecular interactions within bladder cancer cells. The expression of GDF-9 in human bladder tissues and bladder cancer cell lines was assessed at both the mRNA and protein levels using RT-PCR and immunohistochemistry, respectively. Full-length GDF-9 cDNA was amplified from normal mammary tissues. GDF-9 was overexpressed in bladder cancer cell lines using a mammalian expression construct. The effect of GDF-9 on cellular functions, was examined in bladder cancer cells overexpressing GDF-9 using a variety of in vitro assays. In normal bladder tissues, stronger staining of GDF-9 was seen in transitional cells, both in the cytoplasm and in the nucleus. In contrast, the staining of GDF-9 was notably weak or absent in cancer cells of tumour tissues. Similarly, the bladder cancer cell lines RT112 and EJ138, expressed very low levels of GDF-9. Moreover, overexpression of GDF-9 reduced the growth, adhesion and migration of bladder cell lines in vitro. However, the overexpression of GDF-9 had little bearing on the invasion of bladder cell lines in vitro. In conclusion, GDF-9 is expressed at lower levels in human bladder cancer cells compared with normal transitional cells of the bladder. GDF-9 levels are inversely correlated with the growth, adhesion and migration of bladder cancer cells in vitro. The results of the present study suggest that GDF-9 is a potential tumour suppressor in human bladder cancer
    • …
    corecore