59 research outputs found

    Identity crisis in pulmonary arterial hypertension

    Get PDF
    International audiencePulmonary arterial hypertension (PAH) shares many hallmarks with cancer. Cancer cells acquire their hallmarks by a pathological Darwinian evolution process built on the so-called cancer cell ''identity crisis.'' Here we demonstrate that PAH shares the most striking features of the cancer identity crisis: the ectopic expression of normally silent tissue-specific genes

    Phase mapping of aging process in InN nanostructures: oxygen incorporation and the role of the zincblende phase

    Full text link
    Uncapped InN nanostructures undergo a deleterious natural aging process at ambient conditions by oxygen incorporation. The phases involved in this process and their localization is mapped by Transmission Electron Microscopy (TEM) related techniques. The parent wurtzite InN (InN-w) phase disappears from the surface and gradually forms a highly textured cubic layer that completely wraps up a InN-w nucleus which still remains from original single-crystalline quantum dots. The good reticular relationships between the different crystals generate low misfit strains and explain the apparent easiness for phase transformations at room temperature and pressure conditions, but also disable the classical methods to identify phases and grains from TEM images. The application of the geometrical phase algorithm in order to form numerical moire mappings, and RGB multilayered image reconstructions allows to discern among the different phases and grains formed inside these nanostructures. Samples aged for shorter times reveal the presence of metastable InN:O zincblende (zb) volumes, which acts as the intermediate phase between the initial InN-w and the most stable cubic In2O3 end phase. These cubic phases are highly twinned with a proportion of 50:50 between both orientations. We suggest that the existence of the intermediate InN:O-zb phase should be seriously considered to understand the reason of the widely scattered reported fundamental properties of thought to be InN-w, as its bandgap or superconductivity.Comment: 18 pages 7 figure

    Temperature-induced topological phase transition in HgTe quantum wells

    Full text link
    We report a direct observation of temperature-induced topological phase transition between trivial and topological insulator in HgTe quantum well. By using a gated Hall bar device, we measure and represent Landau levels in fan charts at different temperatures and we follow the temperature evolution of a peculiar pair of "zero-mode" Landau levels, which split from the edge of electron-like and hole-like subbands. Their crossing at critical magnetic field BcB_c is a characteristic of inverted band structure in the quantum well. By measuring the temperature dependence of BcB_c, we directly extract the critical temperature TcT_c, at which the bulk band-gap vanishes and the topological phase transition occurs. Above this critical temperature, the opening of a trivial gap is clearly observed.Comment: 5 pages + Supplemental Materials; Phys. Rev. Lett. (accepted

    Temperature-driven single-valley Dirac fermions in HgTe quantum wells

    Full text link
    We report on temperature-dependent magnetospectroscopy of two HgTe/CdHgTe quantum wells below and above the critical well thickness dcd_c. Our results, obtained in magnetic fields up to 16 T and temperature range from 2 K to 150 K, clearly indicate a change of the band-gap energy with temperature. The quantum well wider than dcd_c evidences a temperature-driven transition from topological insulator to semiconductor phases. At the critical temperature of 90 K, the merging of inter- and intra-band transitions in weak magnetic fields clearly specifies the formation of gapless state, revealing the appearance of single-valley massless Dirac fermions with velocity of 5.6×1055.6\times10^5 m×\timess−1^{-1}. For both quantum wells, the energies extracted from experimental data are in good agreement with calculations on the basis of the 8-band Kane Hamiltonian with temperature-dependent parameters.Comment: 5 pages, 3 figures and Supplemental Materials (4 pages

    Temperature-dependent magnetospectroscopy of HgTe quantum wells

    Full text link
    We report on magnetospectroscopy of HgTe quantum wells in magnetic fields up to 45 T in temperature range from 4.2 K up to 185 K. We observe intra- and inter-band transitions from zero-mode Landau levels, which split from the bottom conduction and upper valence subbands, and merge under the applied magnetic field. To describe experimental results, realistic temperature-dependent calculations of Landau levels have been performed. We show that although our samples are topological insulators at low temperatures only, the signature of such phase persists in optical transitions at high temperatures and high magnetic fields. Our results demonstrate that temperature-dependent magnetospectroscopy is a powerful tool to discriminate trivial and topological insulator phases in HgTe quantum wells

    Massless Dirac fermions in III-V semiconductor quantum wells

    Full text link
    We report on the clear evidence of massless Dirac fermions in two-dimensional system based on III-V semiconductors. Using a gated Hall bar made on a three-layer InAs/GaSb/InAs quantum well, we restore the Landau levels fan chart by magnetotransport and unequivocally demonstrate a gapless state in our sample. Measurements of cyclotron resonance at different electron concentrations directly indicate a linear band crossing at the Γ\Gamma point of Brillouin zone. Analysis of experimental data within analytical Dirac-like Hamiltonian allows us not only determing velocity vF=1.8⋅105v_F=1.8\cdot10^5 m/s of massless Dirac fermions but also demonstrating significant non-linear dispersion at high energies.Comment: Main text and Supplemental Materials, 14 pages, 9 figure

    FFAT motif phosphorylation controls formation and lipid transfer function of inter‐organelle contacts

    Get PDF
    Organelles are physically connected in membrane contact sites. The endoplasmic reticulum possesses three major receptors, VAP‐A, VAP‐B, and MOSPD2, which interact with proteins at the surface of other organelles to build contacts. VAP‐A, VAP‐B, and MOSPD2 contain an MSP domain, which binds a motif named FFAT (two phenylalanines in an acidic tract). In this study, we identified a non‐conventional FFAT motif where a conserved acidic residue is replaced by a serine/threonine. We show that phosphorylation of this serine/threonine is critical for non‐conventional FFAT motifs (named Phospho‐FFAT) to be recognized by the MSP domain. Moreover, structural analyses of the MSP domain alone or in complex with conventional and Phospho‐FFAT peptides revealed new mechanisms of interaction. Based on these new insights, we produced a novel prediction algorithm, which expands the repertoire of candidate proteins with a Phospho‐FFAT that are able to create membrane contact sites. Using a prototypical tethering complex made by STARD3 and VAP, we showed that phosphorylation is instrumental for the formation of ER‐endosome contacts, and their sterol transfer function. This study reveals that phosphorylation acts as a general switch for inter‐organelle contacts

    Natural Nuclear Reactor Oklo and Variation of Fundamental Constants Part 1: Computation of Neutronics of Fresh Core

    Full text link
    Using modern methods of reactor physics we have performed full-scale calculations of the natural reactor Oklo. For reliability we have used recent version of two Monte Carlo codes: Russian code MCU REA and world wide known code MCNP (USA). Both codes produce similar results. We have constructed a computer model of the reactor Oklo zone RZ2 which takes into account all details of design and composition. The calculations were performed for three fresh cores with different uranium contents. Multiplication factors, reactivities and neutron fluxes were calculated. We have estimated also the temperature and void effects for the fresh core. As would be expected, we have found for the fresh core a significant difference between reactor and Maxwell spectra, which was used before for averaging cross sections in the Oklo reactor. The averaged cross section of Sm-149 and its dependence on the shift of resonance position (due to variation of fundamental constants) are significantly different from previous results. Contrary to results of some previous papers we find no evidence for the change of the fine structure constant in the past and obtain new, most accurate limits on its variation with time: -4 10^{-17}year^{-1} < d alpha/dt/alpha < 3 10^{-17} year^{-1} A further improvement in the accuracy of the limits can be achieved by taking account of the core burnup. These calculations are in progress.Comment: 25 pages, 14 figures, 12 tables, minor corrections, typos correcte
    • 

    corecore