355 research outputs found
The Carnian Humid Episode of the late Triassic: a review
From 1989 to 1994 a series of papers outlined evidence for a brief episode of climate change from arid to humid, and then back to arid, during the Carnian Stage of the late Triassic Epoch. This time of climate change was compared to marine and terrestrial biotic changes, mainly extinction and then radiation of flora and fauna. Subsequently termed, albeit incorrectly, the Carnian Pluvial Event (CPE) by successive authors, interest in this episode of climatic change has increased steadily, with new evidence being published as well as several challenges to the theory. The exact nature of this humid episode, whether reflecting widespread precipitation or more local effects, as well as its ultimate cause, remains equivocal. Bed-by-bed sampling of the Carnian in the Southern Alps (Dolomites) shows the episode began with a negative carbon isotope excursion that lasted for only part of one ammonoid zone (A. austriacum). However, that the Carnian Humid Episode represents a significantly longer period, both environmentally and biotically, is irrefutable. The evidence is strongest in the European, Middle Eastern, Himalayan, North American and Japanese successions, but not always so clear in South America, Antarctica and Australia. The eruption of the Wrangellia Large Igneous Province and global warming (causing increased evaporation in the Tethyan and Panthalassic oceans) are suggested as causes for the humid episode
Electron and hole mobility reduction and Hall factor in phosphorus-compensated p-type silicon
The conductivity mobility for majority carrier holes in compensated p-type silicon is determined by combined measurement of the resistivity and the net doping, the latter via electrochemical capacitance-voltage measurements. The minority electron mobility was also measured with a technique based on measurements of surface-limited effective carrier lifetimes. While both minority and majority carrier mobilities are found to be significantly reduced by compensation, the impact is greater on the minority electron mobility. The Hall factor, which relates the Hall mobility to the conductivity mobility, has also been determined using the Hall method combined with the capacitance-voltage measurements. Our results indicate a similar Hall factor in both compensated and noncompensated samples.This work was supported by the Australian Research
Council ARC and by the DAAD/Go8 researcher exchange
funding scheme
What side effects are problematic for patients prescribed antipsychotic medication? the Maudsley Side Effects (MSE) measure for antipsychotic medication
Background Capturing service users' perspectives can highlight additional and different concerns to those of clinicians, but there are no up to date, self-report psychometrically sound measures of side effects of antipsychotic medications. Aim To develop a psychometrically sound measure to identify antipsychotic side effects important to service users, the Maudsley Side Effects (MSE) measure. Method An initial item bank was subjected to a Delphi exercise (n = 9) with psychiatrists and pharmacists, followed by service user focus groups and expert panels (n = 15) to determine item relevance and language. Feasibility and comprehensive psychometric properties were established in two samples (N43 and N50). We investigated whether we could predict the three most important side effects for individuals from their frequency, severity and life impact. Results MSE is a 53-item measure with good reliability and validity. Poorer mental and physical health, but not psychotic symptoms, was related to side-effect burden. Seventy-nine percent of items were chosen as one of the three most important effects. Severity, impact and distress only predicted 'putting on weight' which was more distressing, more severe and had more life impact in those for whom it was most important. Conclusions MSE is a self-report questionnaire that identifies reliably the side-effect burden as experienced by patients. Identifying key side effects important to patients can act as a starting point for joint decision making on the type and the dose of medication
AXL-associated tumor inflammation as a poor prognostic signature in chemotherapy-treated triple-negative breast cancer patients
A subgroup of triple-negative breast cancer (TNBC) shows epithelial-to-mesenchymal transition (EMT) features, which are sustained by the interaction between cancer cells and tumor-associated macrophages (TAMs). In this study, the clinical relevance of 30 EMT-related kinases and the potential cross-talk with TAMs were investigated in a cohort of 203 TNBC patients treated with adjuvant chemotherapy. The prognostic value of the evaluated markers was validated in two independent cohorts of TNBC patients treated with adjuvant chemotherapy (N=95; N=137). In vitro, we investigated the potential synergism between cancer cells and TAMs. We found that the EMT-related kinase AXL showed the highest correlation with the frequency of CD163-positive macrophages (rS=0.503; P<0.0001). Relapsing TNBC patients presented high expression of AXL (P<0.0001) and CD163 (P<0.018), but only AXL retained independent prognostic significance in multivariate analysis (relapse-free survival, P=0.002; overall survival P=0.001). In vitro analysis demonstrated that AXL-expressing TNBC cells were able to polarize human macrophages towards an M2-like phenotype, and modulate a specific pattern of pro-tumor cytokines and chemokines. Selective AXL inhibition impaired the activity of M2-like macrophages, reducing cancer cell invasiveness, and restoring the sensitivity of breast cancer cells to chemotherapeutic drugs. These data suggest that the EMT-related kinase AXL overexpressed in cancer cells has prognostic significance, and contributes to the functional skewing of macrophage functions in TNBC. AXL inhibition may represent a novel strategy to target cancer cells, as well as tumor-promoting TAMs in TNBC
Blockade of insulin-like growth factors increases efficacy of paclitaxel in metastatic breast cancer.
Breast cancer remains the leading cause of cancer death in women owing to metastasis and the development of resistance to established therapies. Macrophages are the most abundant immune cells in the breast tumor microenvironment and can both inhibit and support cancer progression. Thus, gaining a better understanding of how macrophages support cancer could lead to the development of more effective therapies. In this study, we find that breast cancer-associated macrophages express high levels of insulin-like growth factors 1 and 2 (IGFs) and are the main source of IGFs within both primary and metastatic tumors. In total, 75% of breast cancer patients show activation of insulin/IGF-1 receptor signaling and this correlates with increased macrophage infiltration and advanced tumor stage. In patients with invasive breast cancer, activation of Insulin/IGF-1 receptors increased to 87%. Blocking IGF in combination with paclitaxel, a chemotherapeutic agent commonly used to treat breast cancer, showed a significant reduction in tumor cell proliferation and lung metastasis in pre-clinical breast cancer models compared to paclitaxel monotherapy. Our findings provide the rationale for further developing the combination of paclitaxel with IGF blockers for the treatment of invasive breast cancer, and Insulin/IGF1R activation and IGF+ stroma cells as potential biomarker candidates for further evaluation
Immune-mediated mechanisms influencing the efficacy of anticancer therapies
Conventional anticancer therapies, such as chemotherapy, radiotherapy, and targeted therapy, are designed to kill cancer cells. However, the efficacy of anticancer therapies is not only determined by their direct effects on cancer cells but also by off-target effects within the host immune system. Cytotoxic treatment regimens elicit several changes in immune-related parameters including the composition, phenotype, and function of immune cells. Here we discuss the impact of innate and adaptive immune cells on the success of anticancer therapy. In this context we examine the opportunities to exploit host immune responses to boost tumor clearing, and highlight the challenges facing the treatment of advanced metastatic disease
Neutrophils in cancer: neutral no more
Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets
Sedimentary flow heterogeneities in the Triassic U.K. Sherwood Sandstone Group: Insights for hydrocarbon exploration
Fluvial and aeolian sedimentary successions host important hydrocarbon resources as well as major groundwater aquifers. This review of the lithological characteristics of Triassic fluvio‐aeolian successions of the Sherwood Sandstone Group (United Kingdom) demonstrates how distance from a fluvial sediment source and rate of rift‐related tectonic subsidence play important roles in governing reservoir quality in continental successions. Increasing distance from the fluvial sediment source area results in increased porosity and permeability in deposits of mixed fluvial and aeolian reservoir successions that accumulated in arid and semiarid settings. Indeed, successions of the U.K. Sherwood Sandstone Group reveal an increase in the proportion of highly permeable deposits of aeolian origin with increasing distance from the principal uplands, represented by the Armorican Massif in northern France, which formed the main source for delivery of fluvial sediment to a series of rift basins. A progressive reduction in the discharge of fluvial systems entering and passing through a series of interlinked rift basins encouraged aeolian accumulation in more distal basins. Extensional tectonics enabled preservation of highly permeable aeolian facies in basins subject to high rates (≳100 m/Myr) of tectonic subsidence by rapidly placing such deposits below the water table. However, successions exclusively characterized by fluvial lithofacies record decreases in both porosity and permeability with increasing distance (~250–750 km) from the sediment source due to the coupling of porosity reduction and increasing clay content
PI3Kγ is a molecular switch that controls immune suppression
Macrophages play critical, but opposite, roles in acute and chronic inflammation and cancer1,2,3,4,5. In response to pathogens or injury, inflammatory macrophages express cytokines that stimulate cytotoxic T cells, whereas macrophages in neoplastic and parasitic diseases express anti-inflammatory cytokines that induce immune suppression and may promote resistance to T cell checkpoint inhibitors1,2,3,4,5,6,7. Here we show that macrophage PI 3-kinase γ controls a critical switch between immune stimulation and suppression during inflammation and cancer. PI3Kγ signalling through Akt and mTor inhibits NFκB activation while stimulating C/EBPβ activation, thereby inducing a transcriptional program that promotes immune suppression during inflammation and tumour growth. By contrast, selective inactivation of macrophage PI3Kγ stimulates and prolongs NFκB activation and inhibits C/EBPβ activation, thus promoting an immunostimulatory transcriptional program that restores CD8+ T cell activation and cytotoxicity. PI3Kγ synergizes with checkpoint inhibitor therapy to promote tumour regression and increased survival in mouse models of cancer. In addition, PI3Kγ-directed, anti-inflammatory gene expression can predict survival probability in cancer patients. Our work thus demonstrates that therapeutic targeting of intracellular signalling pathways that regulate the switch between macrophage polarization states can control immune suppression in cancer and other disorders
An evidence-based recommendation on bed head elevation for mechanically ventilated patients
A semi-upright position in ventilated patients is recommended to prevent ventilator-associated pneumonia (VAP) and is one of the components in the Ventilator Bundle of the Institute for Health Care Improvement. This recommendation, however, is not an evidence-based one.status: publishe
- …