2,559 research outputs found
The broad emission-line region: the confluence of the outer accretion disc with the inner edge of the dusty torus
(Abridged) We investigate the observational characteristics of BLR geometries
in which the BLR clouds bridge the gap, both in distance and scale height,
between the outer accretion disc and the hot dust, forming an effective surface
of a "bowl". The gas dynamics are dominated by gravity, and we include the
effects of transverse Doppler shift, gravitational redshift and scale-height
dependent macro-turbulence. Our simple model reproduces many of the phenomena
observed in broad emission-line variability studies, including (i) the absence
of response in the core of the optical recombination lines on short timescales,
(ii) the enhanced red-wing response on short timescales, (iii) differences
between the measured delays for the HILs and LILs, and (iv) identifies
turbulence as a means of producing Lorentzian profiles (esp. for LILs) in low
inclination systems, and for suppressing significant continuum--emission-line
delays between the line wings and line core (esp. in LILs). A key motivation of
this work was to reveal the physical underpinnings of the reported measurements
of SMBH masses and their uncertainties. We find that SMBH masses derived from
measurements of the fwhm of the mean and rms profiles show the closest
correspondence between the emission lines in a single object, even though the
emission line fwhm is a more biased mass indicator with respect to inclination.
The predicted large discrepancies in the SMBH mass estimates between emission
lines at low inclination, as derived using the line dispersion, we suggest may
be used as a means of identifying near face-on systems. Our general results do
not depend on specific choices in the simplifying assumptions, but are in fact
generic properties of BLR geometries with axial symmetry that span a
substantial range in radially-increasing scale height supported by turbulence,
which then merge into the inner dusty TOR.Comment: 29 pages, 23 figures and 1 tabl
Test results of collision warning systems on off-highway dump trucks: phase 2
"This report summarizes ongoing research at the National Institute for Occupational Safety and Health, Spokane Research Laboratory, in which collision warning systems for surface mining dump trucks are being evaluated. Common accidents involve these large trucks running over smaller vehicles or pedestrian workers. Collision warning systems currently use one of several methods, including radar, radio-frequency-signal detection, or ultrasonic signals, to detect and warn of the presence of an object or person in the blind spots of the mining equipment. Most available systems have not been tested on large off-highway dump trucks. This report evaluates several systems on two sizes of trucks, a 50-ton-capacity truck commonly used in quarries and construction and a 240-ton-capacity truck commonly used in open-pit mines. Tests were conducted to determine false alarm rates, alarm effectiveness, and reliable detection zones for a person and a pickup truck. The results indicate that radar and radiofrequency identification systems show promise for this application and that several of the improved systems are ready for extensive field tests. However, challenges still exist in applying these technologies to large trucks." - NIOSH-2"February 2001."Also available via the World Wide Web as an Acrobat .pdf file (6.17 MB, 27 p.).Includes bibliographical references (p. 21)
Quantum rainbow scattering at tunable velocities
Elastic scattering cross sections are measured for lithium atoms colliding
with rare gas atoms and SF6 molecules at tunable relative velocities down to
~50 m/s. Our scattering apparatus combines a velocity-tunable molecular beam
with a magneto-optic trap that provides an ultracold cloud of lithium atoms as
a scattering target. Comparison with theory reveals the quantum nature of the
collision dynamics in the studied regime, including both rainbows as well as
orbiting resonances
Electronic bulk and domain wall properties in B-site doped hexagonal ErMnO
Acceptor and donor doping is a standard for tailoring semiconductors. More
recently, doping was adapted to optimize the behavior at ferroelectric domain
walls. In contrast to more than a century of research on semiconductors, the
impact of chemical substitutions on the local electronic response at domain
walls is largely unexplored. Here, the hexagonal manganite ErMnO is donor
doped with Ti. Density functional theory calculations show that
Ti goes to the B-site, replacing Mn. Scanning probe microscopy
measurements confirm the robustness of the ferroelectric domain template. The
electronic transport at both macro- and nanoscopic length scales is
characterized. The measurements demonstrate the intrinsic nature of emergent
domain wall currents and point towards Poole-Frenkel conductance as the
dominant transport mechanism. Aside from the new insight into the electronic
properties of hexagonal manganites, B-site doping adds an additional degree of
freedom for tuning the domain wall functionality
- …