1,889 research outputs found

    Final report of Harvard Gulch flood control project, conduit intake

    Get PDF
    CER65JFR62.December 1965.Prepared for Wright-McLaughlin Engineers.This report describes a hydraulic model study of the intake to the 12-foot diameter conduit for the Harvard Gulch Flood Control Project, Design of an intake to provide a discharge of about 2100 cfs at an upstream water surface elevation of 128.7, to limit the flow at elevations above 128.7, and to accelerate the water to the uniform flow velocity in the conduit for the large discharges was the primary object of this study. A discharge rating curve for the intake is provided in Fig. 12. Flow conditions through the transition were satisfactory for all discharges. An air went should be provided in the conduit at a distance of 40 feet to 80 feet downstream from the transition, The exact location to be determined from the general location of the intake in relation to Logan Street. Velocity profiles in the conduit indicate that no u usual conditions prevail. The model construction tests and conclusions and recommendations are described in this report

    The cutaneous 'rabbit' illusion affects human primary sensory cortex somatopically

    Get PDF
    We used functional magnetic resonance imaging (fMRI) to study neural correlates of a robust somatosensory illusion that can dissociate tactile perception from physical stimulation. Repeated rapid stimulation at the wrist, then near the elbow, can create the illusion of touches at intervening locations along the arm, as if a rabbit hopped along it. We examined brain activity in humans using fMRI, with improved spatial resolution, during this version of the classic cutaneous rabbit illusion. As compared with control stimulation at the same skin sites (but in a different order that did not induce the illusion), illusory sequences activated contralateral primary somatosensory cortex, at a somatotopic location corresponding to the filled-in illusory perception on the forearm. Moreover, the amplitude of this somatosensory activation was comparable to that for veridical stimulation including the intervening position on the arm. The illusion additionally activated areas of premotor and prefrontal cortex. These results provide direct evidence that illusory somatosensory percepts can affect primary somatosensory cortex in a manner that corresponds somatotopically to the illusory percept

    Improved ultrasonic standard reference blocks

    Get PDF
    A program to improve the quality, reproducibility and reliability of nondestructive testing through the development of improved ASTM-type ultrasonic reference standards is described. Reference blocks of aluminum, steel, and titanium alloys are to be considered. Equipment representing the state-of-the-art in laboratory and field ultrasonic equipment was obtained and evaluated. RF and spectral data on ten sets of ultrasonic reference blocks have been taken as part of a task to quantify the variability in response from nominally identical blocks. Techniques for residual stress, preferred orientation, and micro-structural measurements were refined and are applied to a reference block rejected by the manufacturer during fabrication in order to evaluate the effect of metallurgical condition on block response. New fabrication techniques for reference blocks are discussed and ASTM activities are summarized

    Two-Spinon and Orbital Excitations of the Spin-Peierls System TiOCl

    Full text link
    We combine high-resolution resonant inelastic x-ray scattering with cluster calculations utilizing a recently derived effective magnetic scattering operator to analyze the polarization, excitation energy, and momentum dependent excitation spectrum of the low-dimensional quantum magnet TiOCl in the range expected for orbital and magnetic excitations (0 - 2.5 eV). Ti 3d orbital excitations yield complete information on the temperature-dependent crystal-field splitting. In the spin-Peierls phase we observe a dispersive two-spinon excitation and estimate the inter- and intra-dimer magnetic exchange coupling from a comparison to cluster calculations

    High resolution X-ray scattering studies of structural phase transitions in underdoped La2x_{2-x}Bax_xCuO4_4

    Full text link
    We have studied structural phase transitions in high quality underdoped La2x_{2-x}Bax_xCuO4_4 single crystals using high resolution x-ray scattering techniques. Critical properties associated with the continuous High Temperature Tetragonal (HTT, I4/mmmI4/mmm) to Middle Temperature Orthorhombic (MTO, CmcaCmca) phase transition were investigated in single crystal samples with x=0.125, 0.095, and 0.08 and we find that all behavior is consistent with three dimensional XY criticality, as expected from theory. Power law behavior in the orthorhombic strain, 2(a-b)/(a+b), is observed over a remarkably wide temperature range, spanning most of the MTO regime in the phase diagram. Low temperature measurements investigating the Low Temperature Tetragonal (LTT, P42/ncmP4_{2}/ncm) phase, below the strongly discontinuous MTO\toLTT phase transition, in x=0.125 and x=0.095 samples show that the LTT phase is characterized by relatively broad Bragg scattering, compared with that observed at related wavevectors in the HTT phase. This shows that the LTT phase is either an admixture of tetragonal and orthorhombic phases, or that it is orthorhombic with very small orthorhombic strain, consistent with the ``less orthorhombic" low temperature structure previously reported in mixed La2x_{2-x}Srxy_{x-y}Bay_yCuO4_4 single crystals. We compare the complex temperature-composition phase diagram for the location of structural and superconducting phase transitions in underdoped La2x_{2-x}Bax_xCuO4_4 and find good agreement with results obtained on polycrystalline samples.Comment: 8 pages, 7 figures, 1 tabl

    Mineralogy and chemistry of altered Icelandic basalts: Application to clay mineral detection and understanding aqueous environments on Mars

    Get PDF
    We used a suite of techniques, including those emulating compositional data sets obtained from Mars orbit and obtainable at the Mars surface, to examine aqueous alteration of basaltic rocks from Iceland as a mineralogic and geochemical analog for Noachian environments on Mars. A sample suite was collected for laboratory measurement of (1) whole-rock visible/near-infrared (VNIR) reflectance and thermal infrared (TIR) emission spectra; (2) VNIR and TIR reflectance spectra of particle-size separates derived from the bulk rock and from materials extracted from fractures/vesicles; (3) X-ray diffraction (XRD) patterns for determination of quantitative modal mineralogy; (4) major element chemistry using flux fusion of whole-rock powders; and (5) electron microprobe analyses of minerals in thin sections. Conclusions about aqueous alteration can be influenced by technique. For these basalts, whole-rock chemical data showed scant evidence for chemical fractionation, but TIR, VNIR, and XRD measurements identified distinctive assemblages of hydrous silicate minerals, differing by sample. XRD provided the most complete and accurate quantitative determination of sample mineralogy. However, VNIR spectroscopy was the technique most useful for determining composition of low-abundance smectite clays, and TIR spectroscopy was the most useful for recognizing hydrated silicates in thin surface coatings. High spatial resolution mineralogical and chemical data sets were useful for understanding the texture and distribution of alteration products and variations in fluid chemistry. No single approach provides a complete assessment of the environment of alteration, demonstrating the importance of employing multiple, synergistic mineralogical and geochemical techniques and instruments in exploration of rock strata from aqueous paleoenvironments on Mars

    Accelerated fast spin-echo magnetic resonance imaging of the heart using a self-calibrated split-echo approach

    Get PDF
    PURPOSE: Design, validation and application of an accelerated fast spin-echo (FSE) variant that uses a split-echo approach for self-calibrated parallel imaging. METHODS: For self-calibrated, split-echo FSE (SCSE-FSE), extra displacement gradients were incorporated into FSE to decompose odd and even echo groups which were independently phase encoded to derive coil sensitivity maps, and to generate undersampled data (reduction factor up to R = 3). Reference and undersampled data were acquired simultaneously. SENSE reconstruction was employed. RESULTS: The feasibility of SCSE-FSE was demonstrated in phantom studies. Point spread function performance of SCSE-FSE was found to be competitive with traditional FSE variants. The immunity of SCSE-FSE for motion induced mis-registration between reference and undersampled data was shown using a dynamic left ventricular model and cardiac imaging. The applicability of black blood prepared SCSE-FSE for cardiac imaging was demonstrated in healthy volunteers including accelerated multi-slice per breath-hold imaging and accelerated high spatial resolution imaging. CONCLUSION: SCSE-FSE obviates the need of external reference scans for SENSE reconstructed parallel imaging with FSE. SCSE-FSE reduces the risk for mis-registration between reference scans and accelerated acquisitions. SCSE-FSE is feasible for imaging of the heart and of large cardiac vessels but also meets the needs of brain, abdominal and liver imaging

    Scale-invariant magnetic anisotropy in RuCl3_3 at high magnetic fields

    Full text link
    In RuCl3_3, inelastic neutron scattering and Raman spectroscopy reveal a continuum of non-spin-wave excitations that persists to high temperature, suggesting the presence of a spin liquid state on a honeycomb lattice. In the context of the Kitaev model, magnetic fields introduce finite interactions between the elementary excitations, and thus the effects of high magnetic fields - comparable to the spin exchange energy scale - must be explored. Here we report measurements of the magnetotropic coefficient - the second derivative of the free energy with respect to magnetic field orientation - over a wide range of magnetic fields and temperatures. We find that magnetic field and temperature compete to determine the magnetic response in a way that is independent of the large intrinsic exchange interaction energy. This emergent scale-invariant magnetic anisotropy provides evidence for a high degree of exchange frustration that favors the formation of a spin liquid state in RuCl3_3.Comment: arXiv admin note: substantial text overlap with arXiv:1901.09245. Nature Physic
    corecore