3 research outputs found

    Structural and functional abnormalities of retinal ribbon synapses due to Cacna2d4 mutation

    Full text link
    PURPOSE: In a spontaneous mutant substrain of C57BL/10 mice, severely affected retinal ribbon-type synapses have been described. The retinopathy was accompanied by a substantial loss in the activities of the second-order neurons. Rod photoreceptor responses were maintained with reduced amplitude, whereas cone activities were absent. This study was conducted to identify the genetic defect underlying this hitherto unknown autosomal recessive cone-rod dysfunction. METHODS: Genome-wide linkage analysis and screening of positional candidate genes were used to identify the causative mutation. Tissue-specific transcriptional activity of the defective gene was determined by Northern blot analysis and RT-PCR approaches. The number of cone photoreceptors was estimated by immunohistochemistry. RESULTS: The mutation was localized to a 275-kb region of chromosome 6. Within this candidate interval, a homozygous frameshift mutation (c.2367insC) was identified in the Cacna2d4 gene of affected animals. This gene codes for an L-type calcium channel auxiliary subunit of the alpha2delta type. The mutation introduces a premature stop codon that truncates one third of the predicted Cacna2d4 protein. A severe reduction in Cacna2d4 transcript levels observed in mutant retinas probably results in the lack of Cacna2d4 protein. The mutation leads to significant loss of rods, whereas the number of cone cells remains unaffected until 6 weeks of age. CONCLUSIONS: The Cacna2d4 mutation underlies a novel channelopathy leading to cone-rod dysfunction in the visual system of mice and provides a new candidate gene for human retinal disorders including night blindness, retinitis pigmentosa, and cone-rod dystrophies

    No association of the variant rs11887120 in DNMT3A with cognitive decline in individuals with mild cognitive impairment

    No full text
    Alterations in DNA methylation have been associated with cognitive decline and Alzheimer's disease. A recent study of mild cognitive impairment (MCI) reported a significant association between annual decline in cognitive function and the rs11887120 SNP located in DNMT3A, a gene implicated in DNA methylation. Here, we aimed to replicate this finding in two independent MCI cohorts (n = 1024); however, no significant association was observed in either cohort or the pooled dataset. In stratified analyses for conversion to Alzheimer's disease status, no association between rs11887120 and cognitive decline was observed in either converters or nonconverters. In conclusion, our analyses provide no support for the hypothesis that genetic variants in DNMT3A are implicated in cognitive performance decline in individuals with MCI
    corecore