76 research outputs found

    Diffuse reflection spectroscopy at the fingertip:design and performance of a compact side-firing probe for tissue discrimination during colorectal cancer surgery

    Get PDF
    Optical technologies are widely used for tissue sensing purposes. However, maneuvering conventional probe designs with flat-tipped fibers in narrow spaces can be challenging, for instance during pelvic colorectal cancer surgery. In this study, a compact side-firing fiber probe was developed for tissue discrimination during colorectal cancer surgery using diffuse reflectance spectroscopy. The optical behavior was compared to flat-tipped fibers using both Monte Carlo simulations and experimental phantom measurements. The tissue classification performance was examined using freshly excised colorectal cancer specimens. Using the developed probe and classification algorithm, an accuracy of 0.92 was achieved for discriminating tumor tissue from healthy tissue

    Spatial and Spectral Reconstruction of Breast Lumpectomy Hyperspectral Images

    Get PDF
    (1) Background: Hyperspectral imaging has emerged as a promising margin assessment technique for breast-conserving surgery. However, to be implicated intraoperatively, it should be both fast and capable of yielding high-quality images to provide accurate guidance and decision-making throughout the surgery. As there exists a trade-off between image quality and data acquisition time, higher resolution images come at the cost of longer acquisition times and vice versa. (2) Methods: Therefore, in this study, we introduce a deep learning spatial–spectral reconstruction framework to obtain a high-resolution hyperspectral image from a low-resolution hyperspectral image combined with a high-resolution RGB image as input. (3) Results: Using the framework, we demonstrate the ability to perform a fast data acquisition during surgery while maintaining a high image quality, even in complex scenarios where challenges arise, such as blur due to motion artifacts, dead pixels on the camera sensor, noise from the sensor’s reduced sensitivity at spectral extremities, and specular reflections caused by smooth surface areas of the tissue. (4) Conclusion: This gives the opportunity to facilitate an accurate margin assessment through intraoperative hyperspectral imaging.</p

    Tumor Segmentation in Colorectal Ultrasound Images Using an Ensemble Transfer Learning Model:Towards Intra-Operative Margin Assessment

    Get PDF
    Tumor boundary identification during colorectal cancer surgery can be challenging, and incomplete tumor removal occurs in approximately 10% of the patients operated for advanced rectal cancer. In this paper, a deep learning framework for automatic tumor segmentation in colorectal ultrasound images was developed, to provide real-time guidance on resection margins using intra-operative ultrasound. A colorectal ultrasound dataset was acquired consisting of 179 images from 74 patients, with ground truth tumor annotations based on histopathology results. To address data scarcity, transfer learning techniques were used to optimize models pre-trained on breast ultrasound data for colorectal ultrasound data. A new custom gradient-based loss function (GWDice) was developed, which emphasizes the clinically relevant top margin of the tumor while training the networks. Lastly, ensemble learning methods were applied to combine tumor segmentation predictions of multiple individual models and further improve the overall tumor segmentation performance. Transfer learning outperformed training from scratch, with an average Dice coefficient over all individual networks of 0.78 compared to 0.68. The new GWDice loss function clearly decreased the average tumor margin prediction error from 1.08 mm to 0.92 mm, without compromising the segmentation of the overall tumor contour. Ensemble learning further improved the Dice coefficient to 0.84 and the tumor margin prediction error to 0.67 mm. Using transfer and ensemble learning strategies, good tumor segmentation performance was achieved despite the relatively small dataset. The developed US segmentation model may contribute to more accurate colorectal tumor resections by providing real-time intra-operative feedback on tumor margins.</p

    Toward the use of diffuse reflection spectroscopy for intra-operative tissue discrimination during sarcoma surgery

    Get PDF
    Significance: Accurately distinguishing tumor tissue from normal tissue is crucial to achieve complete resections during soft tissue sarcoma (STS) surgery while preserving critical structures. Incomplete tumor resections are associated with an increased risk of local recurrence and worse patient prognosis. Aim: We evaluate the performance of diffuse reflectance spectroscopy (DRS) to distinguish tumor tissue from healthy tissue in STSs. Approach: DRS spectra were acquired from different tissue types on multiple locations in 20 freshly excised sarcoma specimens. A k -nearest neighbors classification model was trained to predict the tissue types of the measured locations, using binary and multiclass approaches. Results: Tumor tissue could be distinguished from healthy tissue with a classification accuracy of 0.90, sensitivity of 0.88, and specificity of 0.93 when well-differentiated liposarcomas were included. Excluding this subtype, the classification performance increased to an accuracy of 0.93, sensitivity of 0.94, and specificity of 0.93. The developed model showed a consistent performance over different histological subtypes and tumor locations. Conclusions: Automatic tissue discrimination using DRS enables real-time intraoperative guidance, contributing to more accurate STS resections.</p

    Optical biopsy of epithelial cancers by optical coherence tomography

    Get PDF
    Optical coherence tomography (OCT) is an optical technique that measures the backscattering of near-infrared light by tissue. OCT yields in 2D and 3D images at micrometer-scale resolution, thus providing optical biopsies, approaching the resolution of histopathological imaging. The technique has shown to allow in vivo differentiation between benign and malignant epithelial tissue, through qualitative assessment of OCT images, as well as by quantitative evaluation, e.g., functional OCT. This study aims to summarize the principles of OCT and to discuss the current literature on the diagnostic value of OCT in the diagnosis of epithelial (pre)malignant lesions. The authors did a systematic search of the electronic databases PubMed and Embase on OCT in the diagnostic process of (pre)malignant epithelial lesions. OCT is able to differentiate between benign and (pre)malignant lesions of epithelial origin in a wide variety of tissues. In this way, OCT can detect skin cancers, oral, laryngeal, and esophageal cancer as well as genital and bladder cancer. OCT is an innovative technique which enables an optical biopsy of epithelial lesions. The incorporation of OCT in specific tools, like handheld and catheter-based probes, will further improve the implementation of this technology in daily clinical practice

    Tissue classification of breast cancer by hyperspectral unmixing

    Get PDF
    Please click Additional Files below to see the full abstract

    Resection Ratios and Tumor Eccentricity in Breast-Conserving Surgery Specimens for Surgical Accuracy Assessment

    Get PDF
    This study aims to evaluate several defined specimen parameters that would allow to determine the surgical accuracy of breast-conserving surgeries (BCS) in a representative population of patients. These specimen parameters could be used to compare surgical accuracy when using novel technologies for intra-operative BCS guidance in the future. Different specimen parameters were determined among 100 BCS patients, including the ratio of specimen volume to tumor volume (resection ratio) with different optimal margin widths (0 mm, 1 mm, 2 mm, and 10 mm). Furthermore, the tumor eccentricity [maximum tumor-margin distance − minimum tumor-margin distance] and the relative tumor eccentricity [tumor eccentricity ÷ pathological tumor diameter] were determined. Different patient subgroups were compared using Wilcoxon rank sum tests. When using a surgical margin width of 0 mm, 1 mm, 2 mm, and 10 mm, on average, 19.16 (IQR 44.36), 9.94 (IQR 18.09), 6.06 (IQR 9.69) and 1.35 (IQR 1.78) times the ideal resection volume was excised, respectively. The median tumor eccentricity among the entire patient population was 11.29 mm (SD = 3.99) and the median relative tumor eccentricity was 0.66 (SD = 2.22). Resection ratios based on different optimal margin widths (0 mm, 1 mm, 2 mm, and 10 mm) and the (relative) tumor eccentricity could be valuable outcome measures to evaluate the surgical accuracy of novel technologies for intra-operative BCS guidance.</p

    Toward complete oral cavity cancer resection using a handheld diffuse reflectance spectroscopy probe

    Get PDF
    This ex-vivo study evaluates the feasibility of diffuse reflectance spectroscopy (DRS) for discriminating tumor from healthy tissue, with the aim to develop a technology that can assess resection margins for the presence of tumor cells during oral cavity cancer surgery. Diffuse reflectance spectra were acquired on fresh surgical specimens from 28 patients with oral cavity squamous cell carcinoma. The spectra (400 to 1600 nm) were detected after illuminating tissue with a source fiber at 0.3-, 0.7-, 1.0-, and 2.0-mm distances from a detection fiber, obtaining spectral information from different sampling depths. The spectra were correlated with histopathology. A total of 76 spectra were obtained from tumor tissue and 110 spectra from healthy muscle tissue. The first- A nd second-order derivatives of the spectra were calculated and a classification algorithm was developed using fivefold cross validation with a linear support vector machine. The best results were obtained by the reflectance measured with a 1-mm source-detector distance (sensitivity, specificity, and accuracy are 89%, 82%, and 86%, respectively). DRS can accurately discriminate tumor from healthy tissue in an ex-vivo setting using a 1-mm source-detector distance. Accurate validation methods are warranted for larger sampling depths to allow for guidance during oral cavity cancer excision.</p
    • …
    corecore