2 research outputs found
Testing the Potential of Deep Learning in Earthquake Forecasting
Reliable earthquake forecasting methods have long been sought after, and so
the rise of modern data science techniques raises a new question: does deep
learning have the potential to learn this pattern? In this study, we leverage
the large amount of earthquakes reported via good seismic station coverage in
the subduction zone of Japan. We pose earthquake forecasting as a
classification problem and train a Deep Learning Network to decide, whether a
timeseries of length greater than 2 years will end in an earthquake on the
following day with magnitude greater than 5 or not. Our method is based on
spatiotemporal b value data, on which we train an autoencoder to learn the
normal seismic behaviour. We then take the pixel by pixel reconstruction error
as input for a Convolutional Dilated Network classifier, whose model output
could serve for earthquake forecasting. We develop a special progressive
training method for this model to mimic real life use. The trained network is
then evaluated over the actual dataseries of Japan from 2002 to 2020 to
simulate a real life application scenario. The overall accuracy of the model is
72.3 percent. The accuracy of this classification is significantly above the
baseline and can likely be improved with more data in the futur
SAIPy: A Python Package for single station Earthquake Monitoring using Deep Learning
Seismology has witnessed significant advancements in recent years with the
application of deep learning methods to address a broad range of problems.
These techniques have demonstrated their remarkable ability to effectively
extract statistical properties from extensive datasets, surpassing the
capabilities of traditional approaches to an extent. In this study, we present
SAIPy, an open source Python package specifically developed for fast data
processing by implementing deep learning. SAIPy offers solutions for multiple
seismological tasks, including earthquake detection, magnitude estimation,
seismic phase picking, and polarity identification. We introduce upgraded
versions of previously published models such as CREIMERT capable of identifying
earthquakes with an accuracy above 99.8 percent and a root mean squared error
of 0.38 unit in magnitude estimation. These upgraded models outperform state of
the art approaches like the Vision Transformer network. SAIPy provides an API
that simplifies the integration of these advanced models, including CREIMERT,
DynaPickerv2, and PolarCAP, along with benchmark datasets. The package has the
potential to be used for real time earthquake monitoring to enable timely
actions to mitigate the impact of seismic events. Ongoing development efforts
aim to enhance the performance of SAIPy and incorporate additional features
that enhance exploration efforts, and it also would be interesting to approach
the retraining of the whole package as a multi-task learning problem