2 research outputs found

    Testing the Potential of Deep Learning in Earthquake Forecasting

    Full text link
    Reliable earthquake forecasting methods have long been sought after, and so the rise of modern data science techniques raises a new question: does deep learning have the potential to learn this pattern? In this study, we leverage the large amount of earthquakes reported via good seismic station coverage in the subduction zone of Japan. We pose earthquake forecasting as a classification problem and train a Deep Learning Network to decide, whether a timeseries of length greater than 2 years will end in an earthquake on the following day with magnitude greater than 5 or not. Our method is based on spatiotemporal b value data, on which we train an autoencoder to learn the normal seismic behaviour. We then take the pixel by pixel reconstruction error as input for a Convolutional Dilated Network classifier, whose model output could serve for earthquake forecasting. We develop a special progressive training method for this model to mimic real life use. The trained network is then evaluated over the actual dataseries of Japan from 2002 to 2020 to simulate a real life application scenario. The overall accuracy of the model is 72.3 percent. The accuracy of this classification is significantly above the baseline and can likely be improved with more data in the futur

    SAIPy: A Python Package for single station Earthquake Monitoring using Deep Learning

    Full text link
    Seismology has witnessed significant advancements in recent years with the application of deep learning methods to address a broad range of problems. These techniques have demonstrated their remarkable ability to effectively extract statistical properties from extensive datasets, surpassing the capabilities of traditional approaches to an extent. In this study, we present SAIPy, an open source Python package specifically developed for fast data processing by implementing deep learning. SAIPy offers solutions for multiple seismological tasks, including earthquake detection, magnitude estimation, seismic phase picking, and polarity identification. We introduce upgraded versions of previously published models such as CREIMERT capable of identifying earthquakes with an accuracy above 99.8 percent and a root mean squared error of 0.38 unit in magnitude estimation. These upgraded models outperform state of the art approaches like the Vision Transformer network. SAIPy provides an API that simplifies the integration of these advanced models, including CREIMERT, DynaPickerv2, and PolarCAP, along with benchmark datasets. The package has the potential to be used for real time earthquake monitoring to enable timely actions to mitigate the impact of seismic events. Ongoing development efforts aim to enhance the performance of SAIPy and incorporate additional features that enhance exploration efforts, and it also would be interesting to approach the retraining of the whole package as a multi-task learning problem
    corecore