1,022 research outputs found

    Boundary monomers in the dimer model

    Get PDF
    The correlation functions of an arbitrary number of boundary monomers in the system of close-packed dimers on the square lattice are computed exactly in the scaling limit. The equivalence of the 2n-point correlation functions with those of a complex free fermion is proved, thereby reinforcing the description of the monomer-dimer model by a conformal free field theory with central charge c=1.Comment: 15 pages, 2 figure

    Stable resonances and signal propagation in a chaotic network of coupled units

    Full text link
    We apply the linear response theory developed in \cite{Ruelle} to analyze how a periodic signal of weak amplitude, superimposed upon a chaotic background, is transmitted in a network of non linearly interacting units. We numerically compute the complex susceptibility and show the existence of specific poles (stable resonances) corresponding to the response to perturbations transverse to the attractor. Contrary to the poles of correlation functions they depend on the pair emitting/receiving units. This dynamic differentiation, induced by non linearities, exhibits the different ability that units have to transmit a signal in this network.Comment: 10 pages, 3 figures, to appear in Phys. rev.

    Bowen Measure From Heteroclinic Points

    Full text link
    We present a new construction of the entropy-maximizing, invariant probability measure on a Smale space (the Bowen measure). Our construction is based on points that are unstably equivalent to one given point, and stably equivalent to another: heteroclinic points. The spirit of the construction is similar to Bowen's construction from periodic points, though the techniques are very different. We also prove results about the growth rate of certain sets of heteroclinic points, and about the stable and unstable components of the Bowen measure. The approach we take is to prove results through direct computation for the case of a Shift of Finite type, and then use resolving factor maps to extend the results to more general Smale spaces

    Non-Local Finite-Size Effects in the Dimer Model

    Get PDF
    We study the finite-size corrections of the dimer model on ×N\infty \times N square lattice with two different boundary conditions: free and periodic. We find that the finite-size corrections depend in a crucial way on the parity of NN, and show that, because of certain non-local features present in the model, a change of parity of NN induces a change of boundary condition. Taking a careful account of this, these unusual finite-size behaviours can be fully explained in the framework of the c=2c=-2 logarithmic conformal field theory.Comment: This is a contribution to the Proc. of the O'Raifeartaigh Symposium on Non-Perturbative and Symmetry Methods in Field Theory (June 2006, Budapest, Hungary), published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Jamming probabilities for a vacancy in the dimer model

    Get PDF
    Following the recent proposal made by Bouttier et al [Phys. Rev. E 76, 041140 (2007)], we study analytically the mobility properties of a single vacancy in the close-packed dimer model on the square lattice. Using the spanning web representation, we find determinantal expressions for various observable quantities. In the limiting case of large lattices, they can be reduced to the calculation of Toeplitz determinants and minors thereof. The probability for the vacancy to be strictly jammed and other diffusion characteristics are computed exactly.Comment: 19 pages, 6 figure

    Linear response formula for piecewise expanding unimodal maps

    Full text link
    The average R(t) of a smooth function with respect to the SRB measure of a smooth one-parameter family f_t of piecewise expanding interval maps is not always Lipschitz. We prove that if f_t is tangent to the topological class of f_0, then R(t) is differentiable at zero, and the derivative coincides with the resummation previously proposed by the first named author of the (a priori divergent) series given by Ruelle's conjecture.Comment: We added Theorem 7.1 which shows that the horizontality condition is necessary. The paper "Smooth deformations..." containing Thm 2.8 is now available on the arxiv; see also Corrigendum arXiv:1205.5468 (to appear Nonlinearity 2012

    Transfer matrix for spanning trees, webs and colored forests

    Full text link
    We use the transfer matrix formalism for dimers proposed by Lieb, and generalize it to address the corresponding problem for arrow configurations (or trees) associated to dimer configurations through Temperley's correspondence. On a cylinder, the arrow configurations can be partitioned into sectors according to the number of non-contractible loops they contain. We show how Lieb's transfer matrix can be adapted in order to disentangle the various sectors and to compute the corresponding partition functions. In order to address the issue of Jordan cells, we introduce a new, extended transfer matrix, which not only keeps track of the positions of the dimers, but also propagates colors along the branches of the associated trees. We argue that this new matrix contains Jordan cells.Comment: 29 pages, 7 figure

    Modelling quasicrystals at positive temperature

    Full text link
    We consider a two-dimensional lattice model of equilibrium statistical mechanics, using nearest neighbor interactions based on the matching conditions for an aperiodic set of 16 Wang tiles. This model has uncountably many ground state configurations, all of which are nonperiodic. The question addressed in this paper is whether nonperiodicity persists at low but positive temperature. We present arguments, mostly numerical, that this is indeed the case. In particular, we define an appropriate order parameter, prove that it is identically zero at high temperatures, and show by Monte Carlo simulation that it is nonzero at low temperatures

    Thermodynamic Limit for Finite Dimensional Classical and Quantum Disordered Systems

    Full text link
    We provide a very simple proof for the existence of the thermodynamic limit for the quenched specific pressure for classical and quantum disordered systems on a dd-dimensional lattice, including spin glasses. We develop a method which relies simply on Jensen's inequality and which works for any disorder distribution with the only condition (stability) that the quenched specific pressure is bounded.Comment: 14 pages. Final version, accepted for publication on Rev. Math. Phy

    Structures of Malcev Bialgebras on a simple non-Lie Malcev algebra

    Get PDF
    Lie bialgebras were introduced by Drinfeld in studying the solutions to the classical Yang-Baxter equation. The definition of a bialgebra in the sense of Drinfeld (D-bialgebra), related with any variety of algebras, was given by Zhelyabin. In this work, we consider Malcev bialgebras. We describe all structures of a Malcev bialgebra on a simple non-Lie Malcev algebra
    corecore