14 research outputs found
The sympathomimetic agonist mirabegron did not lower JAK2-V617F allele burden, but restored nestin-positive cells and reduced reticulin fibrosis in patients with myeloproliferative neoplasms: results of phase II study SAKK 33/14
The β-3 sympathomimetic agonist BRL37344 restored nestin-positive cells within the stem cell niche, and thereby normalized blood counts and improved myelofibrosis in a mouse model of JAK2-V617F positive myeloproliferative neoplasms. We therefore tested the effectiveness of mirabegron, a β-3 sympathomimetic agonist, in a phase II trial including 39 JAK2-V617F positive MPN with a mutant allele burden >20%. Treatment consisted of mirabegron 50 mg daily for 24 weeks. The primary endpoint, reduction of the JAK2-V617F allele burden ≥50%, was not reached in any of the patients. One patient achieved a 25% reduction in JAK2-V617F allele burden by 24 weeks. A small subgroup of patients showed hematological improvement. As a side study, bone marrow biopsies were evaluated in 20 patients.We found an increase in the nestin+ cells from a median of 1.09 (interquartile range 0.38-3.27)/mm2 to 3.95 (interquartile range 1.98-8.79)/mm2 (p<0.0001) and a slight decrease of reticulin fibrosis from a median grade of 1.0 (interquartile range 0-3) to 0.5 (interquartile range 0-2) (p=0.01) between start and end of mirabegron treatment. Despite the fact that the primary endpoint of reducing JAK2-V617F allele burden was not reached, the observed effects on nestin+ MSCs and reticulin fibrosis is encouraging and shows that mirabegron can modify the microenvironment where the JAK2-mutant stem cells are maintained
Daratumumab during Myeloma Induction Therapy Is Associated with Impaired Stem Cell Mobilization and Prolonged Post-Transplant Hematologic Recovery.
Daratumumab is being increasingly integrated into first-line multiple myeloma (MM) induction regimens, leading to improved response depth and longer progression-free survival. Autologous stem cell transplantation (ASCT) is commonly performed as a consolidation strategy following first-line induction in fit MM patients. We investigated a cohort of 155 MM patients who received ASCT after first-line induction with or without daratumumab (RVd, n = 110; D-RVd, n = 45), analyzing differences in stem cell mobilization, apheresis, and engraftment. In the D-RVd group, fewer patients successfully completed mobilization at the planned apheresis date (44% vs. 71%, p = 0.0029), and more patients required the use of rescue plerixafor (38% vs. 28%, p = 0.3052). The median count of peripheral CD34+ cells at apheresis was lower (41.37 vs. 52.19 × 106/L, p = 0.0233), and the total number of collected CD34+ cells was inferior (8.27 vs. 10.22 × 106/kg BW, p = 0.0139). The time to recovery of neutrophils and platelets was prolonged (12 vs. 11 days, p = 0.0164; and 16 vs. 14 days, p = 0.0002, respectively), and a higher frequency of erythrocyte transfusions (74% vs. 51%, p = 0.0103) and a higher number of platelet concentrates/patients were required (4 vs. 2; p = 0.001). The use of daratumumab during MM induction might negatively impact stem cell mobilization and engraftment in the context of ASCT
Role of liver magnetic resonance imaging in hyperferritinaemia and the diagnosis of iron overload
Hyperferritinaemia is a frequent clinical problem. Elevated serum ferritin levels can be detected in different genetic and acquired diseases and can occur with or without anaemia. It is therefore important to determine whether hyperferritinaemia is due to iron overload or due to a secondary cause. The main causes of iron overload are intestinal iron hyperabsorption disorders and transfusion-dependent disorders. Iron homeostasis and iron overload are quantified by different diagnostic approaches. The evaluation of serum ferritin and transferrin saturation is the first diagnostic step to identify the cause of hyperferritinaemia. The assessment of liver iron concentration by liver biopsy or magnetic resonance imaging (MRI) may guide the further diagnostic and therapeutic workup. Liver biopsy is invasive and poorly accepted by patients and should only be carried out in selected patients with hereditary haemochromatosis. As a non-invasive approach, MRI is considered the standard method to diagnose and to monitor both hepatic iron overload and the effectiveness of iron chelation therapy in many clinical conditions such as thalassaemia and myelodysplastic syndromes. Accurate evaluation and monitoring of iron overload has major implications regarding adherence, quality of life and prognosis. There are different technical MRI approaches to measuring the liver iron content. Of these, T2 and T2* relaxometry are considered the standard of care. MRI with cardiac T2* mapping is also suitable for the assessment of cardiac iron. Currently there is no consensus which technique should be preferred. The choice depends on local availability and patient population. However, it is important to use the same MRI technique in subsequent visits in the same patient to get comparable results. Signal intensity ratio may be a good adjunct to R2 and R2* methods as it allows easy visual estimation of the liver iron concentration. In this review a group of Swiss haematologists and radiologists give an overview of different conditions leading to primary or secondary iron overload and on diagnostic methods to assess hyperferritinaemia with a focus on the role of liver MRI. They summarise the standard practice in Switzerland on the use of liver iron concentration MRI as well as disease-specific guideline recommendations
CD34+ selected versus unselected autologous stem cell transplantation in patients with advanced-stage mantle cell and diffuse large B-cell lymphoma
Novel strategies aiming to increase survival rates in patients with advanced-stage mantle cell lymphoma (MCL) and relapsing diffuse large B-cell lymphoma (DLBCL) are a clinical need. High-dose chemotherapy (HDCT) with autologous stem cell transplantation (ASCT) has improved progression-free (PFS) and overall survival (OS) in MCL and relapsed DLBCL. However, the role of CD34+ cell selection before ASCT in MCL and DLBCL is unclear. We retrospectively analyzed the outcome of 62 consecutive patients with advanced-stage MCL or relapsed DLBCL undergoing ASCT with (n=31) or without (n=31) prior CD34+ selection. All patients had stage III or IV disease, with 47% having DLBCL and 53% MCL. The median duration for neutrophil and platelet recovery was 12 and 16 days in CD34+ selected patients, and 11 (P<.001) and 14 days (P=.012) in the group without selection, respectively. No differences in toxicities were observed. The 5-year PFS for CD34+ selected versus not selected patients was 67% and 39% (P=.016), and the 5-year OS was 86% and 54% (P=.007). Our data suggest that using CD34+ selected autografts for ASCT in advanced stage MCL and DLBCL is associated with longer PFS and OS without increased toxicity
Myelodysplastic Syndromes in the Postgenomic Era and Future Perspectives for Precision Medicine
Myelodysplastic syndromes (MDS) represent a heterogeneous group of clonal disorders caused by sequential accumulation of somatic driver mutations in hematopoietic stem and progenitor cells (HSPCs). MDS is characterized by ineffective hematopoiesis with cytopenia, dysplasia, inflammation, and a variable risk of transformation into secondary acute myeloid leukemia. The advent of next-generation sequencing has revolutionized our understanding of the genetic basis of the disease. Nevertheless, the biology of clonal evolution remains poorly understood, and the stochastic genetic drift with sequential accumulation of genetic hits in HSPCs is individual, highly dynamic and hardly predictable. These continuously moving genetic targets pose substantial challenges for the implementation of precision medicine, which aims to maximize efficacy with minimal toxicity of treatments. In the current postgenomic era, allogeneic hematopoietic stem cell transplantation remains the only curative option for younger and fit MDS patients. For all unfit patients, regeneration of HSPCs stays out of reach and all available therapies remain palliative, which will eventually lead to refractoriness and progression. In this review, we summarize the recent advances in our understanding of MDS pathophysiology and its impact on diagnosis, risk-assessment and disease monitoring. Moreover, we present ongoing clinical trials with targeting compounds and highlight future perspectives for precision medicine
Iron metabolism in patients with Graves’ hyperthyroidism
OBJECTIVES: Graves' hyperthyroidism (GH) interferes with iron metabolism and elevates ferritin. The precise mechanisms remain unclear. The influence of thyroid hormones on the synthesis/regulation of hepcidin, an important regulator of iron metabolism, remains uncharacterized.
DESIGN: Prospective observational study.
PATIENTS: We included patients (n = 31) with new-onset and untreated GH.
MEASUREMENTS: Laboratory parameters indicative of iron metabolism (ferritin, transferrin, hepcidin), inflammatory markers/cytokines and smoking status were assessed at the diagnosis of GH (T0) and at euthyroidism (T1) in the same patients using multivariable analyses. Hepcidin was measured by mass spectrometry (hepcidinMS ) and ELISA (hepcidinEL ). The impact of T3 on hepatic hepcidin expression was studied in a cell culture model using HepG2 cells.
RESULTS: Median ferritin levels were significantly lower and transferrin significantly higher at T1 than at T0. HepcidinMS levels were lower in males and females at T1 (statistically significant in males only). No statistically significant difference in hepcidinEL was detected between T0 and T1. Plasma levels of inflammatory markers (high-sensitive CRP, procalcitonin) and cytokines (interleukin 6, interleukin 1ß, tumour necrosis factor α) were not different between T0 and T1. Smokers tended to have lower fT3 and fT4 at T0 than nonsmoking GH patients. T3 significantly induced hepcidin mRNA expression in HepG2 cells.
CONCLUSIONS: Iron metabolism in patients with GH undergoes dynamic changes in patients with GH that resemble an acute-phase reaction. Inflammatory parameters and cytokines were unaffected by thyroid status. Gender and smoking status had an impact on ferritin, hepcidin and thyroid hormones
Myelodysplastic Syndromes in the Postgenomic Era and Future Perspectives for Precision Medicine
Myelodysplastic syndromes (MDS) represent a heterogeneous group of clonal disorders caused by sequential accumulation of somatic driver mutations in hematopoietic stem and progenitor cells (HSPCs). MDS is characterized by ineffective hematopoiesis with cytopenia, dysplasia, inflammation, and a variable risk of transformation into secondary acute myeloid leukemia. The advent of next-generation sequencing has revolutionized our understanding of the genetic basis of the disease. Nevertheless, the biology of clonal evolution remains poorly understood, and the stochastic genetic drift with sequential accumulation of genetic hits in HSPCs is individual, highly dynamic and hardly predictable. These continuously moving genetic targets pose substantial challenges for the implementation of precision medicine, which aims to maximize efficacy with minimal toxicity of treatments. In the current postgenomic era, allogeneic hematopoietic stem cell transplantation remains the only curative option for younger and fit MDS patients. For all unfit patients, regeneration of HSPCs stays out of reach and all available therapies remain palliative, which will eventually lead to refractoriness and progression. In this review, we summarize the recent advances in our understanding of MDS pathophysiology and its impact on diagnosis, risk-assessment and disease monitoring. Moreover, we present ongoing clinical trials with targeting compounds and highlight future perspectives for precision medicine
Trends of classification, incidence, mortality, and survival of MDS patients in Switzerland between 2001 and 2012.
Myelodysplastic syndromes (MDS) are emerging disorders of the elderly with an increasing burden on healthcare systems. He we report on the first population-based, epidemiological analysis of patients diagnosed with MDS in Switzerland between 2001 and 2012. The aim of this study was to characterize the extent and limitations of currently available population-based, epidemiological data and formulate recommendations for future health services research. The investigated outcomes comprised trends of annual case frequency, classification of morphological subtypes, incidence, mortality and survival. Annual case frequency increased by 20% (from 263 to 315 cases per year), whereas age-standardized incidence-/mortality-rates remained stable (2.5/1.1 per 100'000 person-years). This observation reflects population growth as well as higher diagnostic awareness and not an increase of age-specific risk. However, it will inevitably influence the future prevalence of MDS and the impact on healthcare systems. Reporting of classification in MDS subtypes was poor with modest improvement from 20% to 39% and increased awareness for mainly higher-risk diseases. Relative survival for all patients at 5-years (RS) ranged between 37 and 40%. Significant better RS was found for younger compared to older higher-risk MDS patients (48% vs. 17%), reflecting the effect of allogeneic hematopoietic stem-cell transplantation. However, no survival advantage was found in elderly patients after introduction of hypomethylating agents as standard for care in this patient group. Our data is in line with results from other MDS and cancer registries. It allows formulating recommendations for future collaborative health services research on MDS patients with national and international partners