516 research outputs found

    Study of contamination sensors. Volume I - Executive summary report

    Get PDF
    Design criteria for automatic remotely indicating fluid contamination sensors, monitors, counters, and recorders and for sampling equipment and technique

    Space Shuttle Program: Automatic rendezvous, proximity operations, and capture (category 3)

    Get PDF
    The NASA Johnson Space Center is actively pursuing the development and demonstration of capabilities for automatic rendezvous, proximity operations, and capture (AR&C) using the Space Shuttle as the active vehicle. This activity combines the technologies, expertise, tools, and facilities of the JSC Tracking and Communications Division (EE), Navigation, Control and Aeronautics Division (EG), Automation and Robotics Division (ER), and Structures and Mechanics Division (ES) of the Engineering Directorate and the Flight Design and Dynamics Division (DM) of the Mission Operations Directorate. Potential benefits of AR&C include more efficient and repeatable rendezvous, proximity operations, and capture operations; reduced impacts on the target vehicles (e.g., Orbiter RCS plume loads); reduced flight crew work loads; reduced ground support requirements; and reduced operational constraints. This paper documents the current JSC capabilities/tools/facilities for AR&C and describes a proposed plan for a progression of ground demonstrations and flight tests and demonstrations of AR&C capabilities. This plan involves the maturing of existing technologies in tracking and communications; guidance, navigation and control; mechanisms; manipulators; and systems management and integrating them into several evolutionary demonstration stages

    Mitochondrial dysfunction is a key determinant of the rare disease lymphangioleiomyomatosis and provides a novel therapeutic target

    Get PDF
    Acknowledgements The authors are grateful to Prof. Dr. Laszlo Seress, Professor Emeritus, Central Electron Microscope Laboratory, University of Pecs, Pecs, Hungary for his invaluable assistance with electron microscopic studies using the Jeol 1200 TEM and Jeol 1400 TEM electron microscopes. Jeol TEM was funded by the GINOP-2.3.3-15-2016-0002 (New generation electron microscope: 3D ultrastructure). We would also like to thank Dr. Veronika Csongei, PhD, Senior Lecturer, Department of Pharmaceutical Biotechnology and Janos Szentagothai Research Centre, University of Pecs, Pecs, Hungary for assistance with statistical analysis. Funding JEP was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP-4.2.4.A/2-11/1-2012-0001 “National Excellence Program”.Peer reviewedPublisher PD

    Integrated computational prediction and experimental validation identifies promiscuous T cell epitopes in the proteome of Mycobacterium bovis

    Get PDF
    The discovery of novel antigens is an essential requirement in devising new diagnostics or vaccines for use in control programmes against human tuberculosis (TB) and bovine tuberculosis (bTB). Identification of potential epitopes recognised by CD4+ T cells requires prediction of peptide binding to MHC class-II, an obligatory prerequisite for T cell recognition. To comprehensively prioritise potential MHC-II-binding epitopes from Mycobacterium bovis, the agent of bTB and zoonotic TB in humans, we integrated three binding prediction methods with the M. bovisproteome using a subset of human HLA alleles to approximate the binding of epitope-containing peptides to the bovine MHC class II molecule BoLA-DRB3. Two parallel strategies were then applied to filter the resulting set of binders: identification of the top-scoring binders or clusters of binders. Our approach was tested experimentally by assessing the capacity of predicted promiscuous peptides to drive interferon-γ secretion from T cells of M. bovis infected cattle. Thus, 376 20-mer peptides, were synthesised (270 predicted epitopes, 94 random peptides with low predictive scores and 12 positive controls of known epitopes). The results of this validation demonstrated significant enrichment (>24 %) of promiscuously recognised peptides predicted in our selection strategies, compared with randomly selected peptides with low prediction scores. Our strategy offers a general approach to the identification of promiscuous epitopes tailored to target populations where there is limited knowledge of MHC allelic diversity

    The monomer-dimer problem and moment Lyapunov exponents of homogeneous Gaussian random fields

    Full text link
    We consider an "elastic" version of the statistical mechanical monomer-dimer problem on the n-dimensional integer lattice. Our setting includes the classical "rigid" formulation as a special case and extends it by allowing each dimer to consist of particles at arbitrarily distant sites of the lattice, with the energy of interaction between the particles in a dimer depending on their relative position. We reduce the free energy of the elastic dimer-monomer (EDM) system per lattice site in the thermodynamic limit to the moment Lyapunov exponent (MLE) of a homogeneous Gaussian random field (GRF) whose mean value and covariance function are the Boltzmann factors associated with the monomer energy and dimer potential. In particular, the classical monomer-dimer problem becomes related to the MLE of a moving average GRF. We outline an approach to recursive computation of the partition function for "Manhattan" EDM systems where the dimer potential is a weighted l1-distance and the auxiliary GRF is a Markov random field of Pickard type which behaves in space like autoregressive processes do in time. For one-dimensional Manhattan EDM systems, we compute the MLE of the resulting Gaussian Markov chain as the largest eigenvalue of a compact transfer operator on a Hilbert space which is related to the annihilation and creation operators of the quantum harmonic oscillator and also recast it as the eigenvalue problem for a pantograph functional-differential equation.Comment: 24 pages, 4 figures, submitted on 14 October 2011 to a special issue of DCDS-

    Fermions and Loops on Graphs. I. Loop Calculus for Determinant

    Full text link
    This paper is the first in the series devoted to evaluation of the partition function in statistical models on graphs with loops in terms of the Berezin/fermion integrals. The paper focuses on a representation of the determinant of a square matrix in terms of a finite series, where each term corresponds to a loop on the graph. The representation is based on a fermion version of the Loop Calculus, previously introduced by the authors for graphical models with finite alphabets. Our construction contains two levels. First, we represent the determinant in terms of an integral over anti-commuting Grassman variables, with some reparametrization/gauge freedom hidden in the formulation. Second, we show that a special choice of the gauge, called BP (Bethe-Peierls or Belief Propagation) gauge, yields the desired loop representation. The set of gauge-fixing BP conditions is equivalent to the Gaussian BP equations, discussed in the past as efficient (linear scaling) heuristics for estimating the covariance of a sparse positive matrix.Comment: 11 pages, 1 figure; misprints correcte

    Modulational instability in a silicon-on-insulator directional coupler: Role of the coupling-induced group velocity dispersion

    Get PDF
    We report frequency conversion experiments in silicon-on-insulator (SOI) directional couplers. We demonstrate that the evanescent coupling between two subwavelength SOI waveguides is strongly dispersive and significantly modifies modulational instability (MI) spectra through the coupling induced group velocity dispersion (GVD). As the separation between two 380-nm-wide silicon photonic wires decreases, the increasing dispersion of the coupling makes the GVD in the symmetric supermode more normal and suppresses the bandwidth of the MI gain observed for larger separations
    corecore