24 research outputs found
Future district heating plant integrated with municipal solid waste (MSW) gasification for hydrogen production
Author's accepted manuscript.Available from 25/05/2021.acceptedVersio
Numerical modeling and validation of hydrothermal liquefaction of a lignin particle for biocrude production
publishedVersio
Development of net energy ratio and emission factor for quad-generation pathways
Published version of an article in the journal: Energy Systems. Also available from the publisher at: http://dx.doi.org/10.1007/s12667-014-0126-4The conversion of biomass to four different outputs via gasification is a renewable technology that could reduce the use of fossil fuels and greenhouse gas (GHG) emissions. This study investigates the energy aspects for a new concept of biomass based quad-generation plant producing power, heat, methanol and methane. Circulating fluidized bed gasifier and the gas technology institute (GTI) gasifier technologies are used for this quad-generation process. Two different biomass feedstocks are considered in this study. The net energy ratio for six different pathways having the range of between 1.3 and 7.2. The lowest limit corresponds to the wood chips-based power, heat, methanol and methane production pathway using GTI technology. Since more efficient alternatives exist for the generation of heat and electricity from biomass, it is argued that syngas is best used for methanol production. The aim of this study was to evaluate the energy performance, reduce GHG and acid rain precursor emission, and use of biomass for different outputs based on demand. Finally, a sensitivity analysis and a comparative study ar conducted for expected technological improvements and factors that could increase the energy performance
ES2009-90084 SIMULATION STUDY ON A HYBRID SOLID OXIDE FUEL CELL (SOFC) -HEAT RECOVERY STEAM GENERATOR (HRSG) -GAS TURBINE IN IGCC POWER PLANT
ABSTRACT The fuel cell model developed to this research is based on a solid oxide fuel cell (SOFC) integrated with a heat recovery steam generator (HRSG), a gas turbine (GT) and a steam turbine (ST). Three possible technological approaches are compared to suggest the desirable combine cycle. First approach indicates the generation of the required steam in the coupled SOFC and gas turbine cycle. Then the exhaust gas from gas turbine involves driving the HRSG. And the last one involves of using exhaust gases in the HRSG which drives the steam turbine by producing steam for additional power works. To achieve the more efficient conversation of the thermal energy to power output, the component design mainly HRSG and steam turbine have to be made in a great concern. And HRSG is considered as a triple pressure for the taken model. This article is also delineated the analysis of coal fed instead of normal methane gas fed, for the reforming power generation based on thermodynamic processes including CO 2 Capture. External reforming in SOFC-HRSG plants fueled by high quality coal enhances efficiency due to improved exhaust heat recovery and higher voltage produced by higher hydrogen partial pressure in the anode inlet. For improving the whole cycle efficiency, power output generation from both SOFC and conventional system (steam turbine and gas turbine) are described as combine system. This model is simulated by the ASPEN plus software which is able to provide thermodynamic and parametric analysis to evaluate the effects of various parameters like air flow rate, temperature, pressure and fuel flow rate on the system performance. Some MATLAB simulations are also added to provide strong opinion for this model through this paper
A pilot study of same-day MRI-only simulation and treatment with MR-guided adaptive palliative radiotherapy (MAP-RT)
We conducted a prospective pilot study evaluating the feasibility of same day MRI-only simulation and treatment with MRI-guided adaptive palliative radiotherapy (MAP-RT) for urgent palliative indications (NCT#03824366). All (16/16) patients were able to complete 99% of their first on-table attempted fractions, and no grades 3-5 toxicities occurred
Numerical and Experimental Investigation of Equivalence Ratio (ER) and Feedstock Particle Size on Birchwood Gasification
This paper discusses the characteristics of Birchwood gasification using the simulated results of a Computational Fluid Dynamics (CFD) model. The CFD model is developed and validated with the experimental results obtained with the fixed bed downdraft gasifier available at the University of Agder (UIA), Norway. In this work, several parameters are examined and given importance, such as producer gas yield, syngas composition, lower heating value (LHV), and cold gas efficiency (CGE) of the syngas. The behavior of the parameters mentioned above is examined by varying the biomass particle size. The diameters of the two biomass particles are 11.5 mm and 9.18 mm. All the parameters investigate within the Equivalences Ratio (ER) range from 0.2 to 0.5. In the simulations, a variable air inflow rate is used to achieve different ER values. For the different biomass particle sizes, CO, CO2, CH4, and H2 mass fractions of the syngas are analyzed along with syngas yield, LHV, and CGE. At an ER value of 0.35, 9.18 mm diameter particle shows average maximum values of 60% of CGE and 2.79 Nm3/h of syngas yield, in turn showing 3.4% and 0.09 Nm3/h improvement in the respective parameters over the 11.5 mm diameter biomass particle