136 research outputs found
Two Theorems in List Decoding
We prove the following results concerning the list decoding of
error-correcting codes:
(i) We show that for \textit{any} code with a relative distance of
(over a large enough alphabet), the following result holds for \textit{random
errors}: With high probability, for a \rho\le \delta -\eps fraction of random
errors (for any \eps>0), the received word will have only the transmitted
codeword in a Hamming ball of radius around it. Thus, for random errors,
one can correct twice the number of errors uniquely correctable from worst-case
errors for any code. A variant of our result also gives a simple algorithm to
decode Reed-Solomon codes from random errors that, to the best of our
knowledge, runs faster than known algorithms for certain ranges of parameters.
(ii) We show that concatenated codes can achieve the list decoding capacity
for erasures. A similar result for worst-case errors was proven by Guruswami
and Rudra (SODA 08), although their result does not directly imply our result.
Our results show that a subset of the random ensemble of codes considered by
Guruswami and Rudra also achieve the list decoding capacity for erasures.
Our proofs employ simple counting and probabilistic arguments.Comment: 19 pages, 0 figure
It'll probably work out: improved list-decoding through random operations
In this work, we introduce a framework to study the effect of random
operations on the combinatorial list-decodability of a code. The operations we
consider correspond to row and column operations on the matrix obtained from
the code by stacking the codewords together as columns. This captures many
natural transformations on codes, such as puncturing, folding, and taking
subcodes; we show that many such operations can improve the list-decoding
properties of a code. There are two main points to this. First, our goal is to
advance our (combinatorial) understanding of list-decodability, by
understanding what structure (or lack thereof) is necessary to obtain it.
Second, we use our more general results to obtain a few interesting corollaries
for list decoding:
(1) We show the existence of binary codes that are combinatorially
list-decodable from fraction of errors with optimal rate
that can be encoded in linear time.
(2) We show that any code with relative distance, when randomly
folded, is combinatorially list-decodable fraction of errors with
high probability. This formalizes the intuition for why the folding operation
has been successful in obtaining codes with optimal list decoding parameters;
previously, all arguments used algebraic methods and worked only with specific
codes.
(3) We show that any code which is list-decodable with suboptimal list sizes
has many subcodes which have near-optimal list sizes, while retaining the error
correcting capabilities of the original code. This generalizes recent results
where subspace evasive sets have been used to reduce list sizes of codes that
achieve list decoding capacity
- …