6,785 research outputs found

    A new class of entanglement measures

    Full text link
    We introduce new entanglement measures on the set of density operators on tensor product Hilbert spaces. These measures are based on the greatest cross norm on the tensor product of the sets of trace class operators on Hilbert space. We show that they satisfy the basic requirements on entanglement measures discussed in the literature, including convexity, invariance under local unitary operations and non-increase under local quantum operations and classical communication.Comment: Revised version accepted by J Math Phys, 12 pages, LaTeX, contains Sections 1-5 & 7 of the previous version. The previous Section 6 is now in quant-ph/0105104 and the previous Section 8 is superseded by quant-ph/010501

    Families of pure PEPS with efficiently simulatable local hidden variable models for most measurements

    Get PDF
    An important problem in quantum information theory is to understand what makes entangled quantum systems non-local or hard to simulate efficiently. In this work we consider situations in which various parties have access to a restricted set of measurements on their particles, and construct entangled quantum states that are essentially classical for those measurements. In particular, given any set of local measurements on a large enough Hilbert space whose dual strictly contains (i.e. contains an open neighborhood of) a pure state, we use the PEPS formalism and ideas from generalized probabilistic theories to construct pure multiparty entangled states that have (a) local hidden variable models, and (b) can be efficiently simulated classically. We believe that the examples we construct cannot be efficiently classically simulated using previous techniques. Without the restriction on the measurements, the states that we construct are non-local, and in some proof-of-principle cases are universal for measurement based quantum computation.This work was supported by EPSRC grant EP/K022512/1.This work was supported by EPSRC grant EP/K022512/1

    Post-Mortem Corporate Payments

    Get PDF

    Verifying continuous-variable entanglement in finite spaces

    Full text link
    Starting from arbitrary Hilbert spaces, we reduce the problem to verify entanglement of any bipartite quantum state to finite dimensional subspaces. Hence, entanglement is a finite dimensional property. A generalization for multipartite quantum states is also given.Comment: 4 page

    Characterizing entanglement with geometric entanglement witnesses

    Full text link
    We show how to detect entangled, bound entangled, and separable bipartite quantum states of arbitrary dimension and mixedness using geometric entanglement witnesses. These witnesses are constructed using properties of the Hilbert-Schmidt geometry and can be shifted along parameterized lines. The involved conditions are simplified using Bloch decompositions of operators and states. As an example we determine the three different types of states for a family of two-qutrit states that is part of the "magic simplex", i.e. the set of Bell-state mixtures of arbitrary dimension.Comment: 19 pages, 4 figures, some typos and notational errors corrected. To be published in J. Phys. A: Math. Theo

    Further results on the cross norm criterion for separability

    Full text link
    In the present paper the cross norm criterion for separability of density matrices is studied. In the first part of the paper we determine the value of the greatest cross norm for Werner states, for isotropic states and for Bell diagonal states. In the second part we show that the greatest cross norm criterion induces a novel computable separability criterion for bipartite systems. This new criterion is a necessary but in general not a sufficient criterion for separability. It is shown, however, that for all pure states, for Bell diagonal states, for Werner states in dimension d=2 and for isotropic states in arbitrary dimensions the new criterion is necessary and sufficient. Moreover, it is shown that for Werner states in higher dimensions (d greater than 2), the new criterion is only necessary.Comment: REVTeX, 19 page

    Nonlinear entanglement witnesses, covariance matrices and the geometry of separable states

    Get PDF
    Entanglement witnesses provide a standard tool for the analysis of entanglement in experiments. We investigate possible nonlinear entanglement witnesses from several perspectives. First, we demonstrate that they can be used to show that the set of separable states has no facets. Second, we give a new derivation of nonlinear witnesses based on covariance matrices. Finally, we investigate extensions to the multipartite case.Comment: 12 pages, 2 figures, for the proceedings of DICE2006 in Piombino (Italy
    corecore