1,338 research outputs found
Alterations in vascular function in primary aldosteronism - a cardiovascular magnetic resonance imaging study
Introduction: Excess aldosterone is associated with increased cardiovascular risk. Aldosterone has a permissive effect on vascular fibrosis. Cardiovascular magnetic resonance imaging (CMR) allows study of vascular function by measuring aortic distensibility. We compared aortic distensibility in primary aldosteronism (PA), essential hypertension (EH) and normal controls and explored the relationship between aortic distensibility and pulse wave velocity (PWV).<p></p>
Methods: We studied PA (n=14) and EH (n=33) subjects and age-matched healthy controls (n=17) with CMR, including measurement of aortic distensibility, and measured PWV using applanation tonometry. At recruitment, PA and EH patients had similar blood pressure and left ventricular mass.<p></p>
Results: Subjects with PA had significantly lower aortic distensibilty and higher PWV compared to EH and healthy controls. These changes were independent of other factors associated with reduced aortic distensibility, including aging. There was a significant relationship between increasing aortic stiffness and age in keeping with physical and vascular aging. As expected, aortic distensibility and PWV were closely correlated.<p></p>
Conclusion: These results demonstrate that PA patients display increased arterial stiffness compared to EH, independent of vascular aging. The implication is that aldosterone invokes functional impairment of arterial function. The long-term implications of arterial stiffening in aldosterone excess require further study.<p></p>
Intrinsic gain modulation and adaptive neural coding
In many cases, the computation of a neural system can be reduced to a
receptive field, or a set of linear filters, and a thresholding function, or
gain curve, which determines the firing probability; this is known as a
linear/nonlinear model. In some forms of sensory adaptation, these linear
filters and gain curve adjust very rapidly to changes in the variance of a
randomly varying driving input. An apparently similar but previously unrelated
issue is the observation of gain control by background noise in cortical
neurons: the slope of the firing rate vs current (f-I) curve changes with the
variance of background random input. Here, we show a direct correspondence
between these two observations by relating variance-dependent changes in the
gain of f-I curves to characteristics of the changing empirical
linear/nonlinear model obtained by sampling. In the case that the underlying
system is fixed, we derive relationships relating the change of the gain with
respect to both mean and variance with the receptive fields derived from
reverse correlation on a white noise stimulus. Using two conductance-based
model neurons that display distinct gain modulation properties through a simple
change in parameters, we show that coding properties of both these models
quantitatively satisfy the predicted relationships. Our results describe how
both variance-dependent gain modulation and adaptive neural computation result
from intrinsic nonlinearity.Comment: 24 pages, 4 figures, 1 supporting informatio
Telomere Shortening Impairs Regeneration of the Olfactory Epithelium in Response to Injury but Not Under Homeostatic Conditions
Atrophy of the olfactory epithelium (OE) associated with impaired olfaction and dry nose represents one of the most common phenotypes of human aging. Impairment in regeneration of a functional olfactory epithelium can also occur in response to injury due to infection or nasal surgery. These complications occur more frequently in aged patients. Although age is the most unifying risk factor for atrophic changes and functional decline of the olfactory epithelium, little is known about molecular mechanisms that could influence maintenance and repair of the olfactory epithelium. Here, we analyzed the influence of telomere shortening (a basic mechanism of cellular aging) on homeostasis and regenerative reserve in response to chemical induced injury of the OE in late generation telomere knockout mice (G3 mTerc−/−) with short telomeres compared to wild type mice (mTerc+/+) with long telomeres. The study revealed no significant influence of telomere shortening on homeostatic maintenance of the OE during mouse aging. In contrast, the regenerative response to chemical induced injury of the OE was significantly impaired in G3 mTerc−/− mice compared to mTerc+/+ mice. Seven days after chemical induced damage, G3 mTerc−/− mice exhibited significantly enlarged areas of persisting atrophy compared to mTerc+/+ mice (p = 0.031). Telomere dysfunction was associated with impairments in cell proliferation in the regenerating epithelium. Deletion of the cell cycle inhibitor, Cdkn1a (p21) rescued defects in OE regeneration in telomere dysfunctional mice. Together, these data indicate that telomere shortening impairs the regenerative capacity of the OE by impairing cell cycle progression in a p21-dependent manner. These findings could be relevant for the impairment in OE function in elderly people
Determinants of Agricultural Pesticide Concentrations in Carpet Dust
Background: Residential proximity to agricultural pesticide applications has been used as a surrogate for exposure in epidemiologic studies, although little is known about the relationship with levels of pesticides in homes
Evidence for strong, widespread chlorine radical chemistry associated with pollution outflow from continental Asia
The chlorine radical is a potent atmospheric oxidant, capable of perturbing tropospheric oxidative cycles normally controlled by the hydroxyl radical. Significantly faster reaction rates allow chlorine radicals to expedite oxidation of hydrocarbons, including methane, and in polluted environments, to enhance ozone production. Here we present evidence, from the CARIBIC airborne dataset, for extensive chlorine radical chemistry associated with Asian pollution outflow, from airborne observations made over the Malaysian Peninsula in winter. This region is known for persistent convection that regularly delivers surface air to higher altitudes and serves as a major transport pathway into the stratosphere. Oxidant ratios inferred from hydrocarbon relationships show that chlorine radicals were regionally more important than hydroxyl radicals for alkane oxidation and were also important for methane and alkene oxidation (>10%). Our observations reveal pollution-related chlorine chemistry that is both widespread and recurrent, and has implications for tropospheric oxidizing capacity, stratospheric composition and ozone chemistry
The Prevalence of TNFα-Induced Necrosis over Apoptosis Is Determined by TAK1-RIP1 Interplay
Death receptor-induced programmed necrosis is regarded as a secondary death mechanism dominating only in cells that cannot properly induce caspase-dependent apoptosis. Here, we show that in cells lacking TGFβ-activated Kinase-1 (TAK1) expression, catalytically active Receptor Interacting Protein 1 (RIP1)-dependent programmed necrosis overrides apoptotic processes following Tumor Necrosis Factor-α (TNFα) stimulation and results in rapid cell death. Importantly, the activation of the caspase cascade and caspase-8-mediated RIP1 cleavage in TNFα-stimulated TAK1 deficient cells is not sufficient to prevent RIP1-dependent necrosome formation and subsequent programmed necrosis. Our results demonstrate that TAK1 acts independently of its kinase activity to prevent the premature dissociation of ubiquitinated-RIP1 from TNFα-stimulated TNF-receptor I and also to inhibit the formation of TNFα-induced necrosome complex consisting of RIP1, RIP3, FADD, caspase-8 and cFLIPL. The surprising prevalence of catalytically active RIP1-dependent programmed necrosis over apoptosis despite ongoing caspase activity implicates a complex regulatory mechanism governing the decision between both cell death pathways following death receptor stimulation
The use of contextualised standardised client simulation to develop clinical reasoning in final year veterinary students
Clinical reasoning is an important skill for veterinary students to develop before graduation. Simulation has been studied in medical education as a method for developing clinical reasoning in students, but evidence supporting it is limited. This study involved the creation of a contextualized, standardized client simulation session that aimed to improve the clinical reasoning ability and confidence of final-year veterinary students. Sixty-eight participants completed three simulated primary-care consultations, with the client played by an actor and the pet by a healthy animal. Survey data showed that all participants felt that the session improved their clinical decision-making ability. Quantitative clinical reasoning self-assessment, performed using a validated rubric, triangulated this finding, showing an improvement in students’ perception of several components of their clinical reasoning skill level from before the simulation to after it. Blinded researcher analysis of the consultation video recordings found that students showed a significant increase in ability on the history-taking and making-sense-of-data (including formation of a differential diagnosis) components of the assessment rubric. Thirty students took part in focus groups investigating their experience with the simulation. Two themes arose from thematic analysis of these data: variety of reasoning methods and “It’s a different way of thinking.” The latter highlights differences between the decision making students practice during their time in education and the decision making they will use once they are in practice. Our findings suggest that simulation can be used to develop clinical reasoning in veterinary students, and they demonstrate the need for further research in this area
The Epstein–Barr virus nuclear antigen-1 promotes telomere dysfunction via induction of oxidative stress
The Epstein–Barr virus (EBV) nuclear antigen (EBNA)-1 promotes the accumulation of chromosomal aberrations in malignant B cells by inducing oxidative stress. Here we report that this phenotype is associated with telomere dysfunction. Stable or conditional expression of EBNA1 induced telomere abnormalities including loss or gain of telomere signals, telomere fusion and heterogeneous length of telomeres. This was accompanied by the accumulation of extrachromosomal telomeres, telomere dysfunction-induced foci (TIFs) containing phosphorylated histone H2AX and the DNA damage response protein 53BP1, telomere-associated promyelocytic leukemia nuclear bodies (APBs), telomeric-sister chromatid exchanges and displacement of the shelterin protein TRF2. The induction of TIFs and APBs was inhibited by treatment with scavengers of reactive oxygen species (ROS) that also promoted the relocalization of TRF2 at telomeres. These findings highlight a novel mechanism by which EBNA1 may promote malignant transformation and tumor progression
Indirect exclusion of four candidate genes for generalized progressive retinal atrophy in several breeds of dogs
BACKGROUND: Generalized progressive retinal atrophy (gPRA) is a hereditary ocular disorder with progressive photoreceptor degeneration in dogs. Four retina-specific genes, ATP binding cassette transporter retina (ABCA4), connexin 36 (CX36), c-mer tyrosin kinase receptor (MERTK) and photoreceptor cell retinol dehydrogenase (RDH12) were investigated in order to identify mutations leading to autosomal recessive (ar) gPRA in 29 breeds of dogs. RESULTS: Mutation screening was performed initially by PCR and single strand conformation polymorphism (SSCP) analysis, representing a simple method with comparatively high reliability for identification of sequence variations in many samples. Conspicuous banding patterns were analyzed via sequence analyses in order to detect the underlying nucleotide variations. No pathogenetically relevant mutations were detected in the genes ABCA4, CX36, MERTK and RDH12 in 71 affected dogs of 29 breeds. Yet 30 new sequence variations were identified, both, in the coding regions and intronic sequences. Many of the sequence variations were in heterozygous state in affected dogs. CONCLUSION: Based on the ar transmittance of gPRA in the breeds investigated, informative sequence variations provide evidence allowing indirect exclusion of pathogenetic mutations in the genes ABCA4 (for 9 breeds), CX36 (for 12 breeds), MERTK (for all 29 breeds) and RDH12 (for 9 breeds)
- …