11,950 research outputs found
Quantum lost property: a possible operational meaning for the Hilbert-Schmidt product
Minimum error state discrimination between two mixed states \rho and \sigma
can be aided by the receipt of "classical side information" specifying which
states from some convex decompositions of \rho and \sigma apply in each run. We
quantify this phenomena by the average trace distance, and give lower and upper
bounds on this quantity as functions of \rho and \sigma. The lower bound is
simply the trace distance between \rho and \sigma, trivially seen to be tight.
The upper bound is \sqrt{1 - tr(\rho\sigma)}, and we conjecture that this is
also tight. We reformulate this conjecture in terms of the existence of a pair
of "unbiased decompositions", which may be of independent interest, and prove
it for a few special cases. Finally, we point towards a link with a notion of
non-classicality known as preparation contextuality.Comment: 3 pages, 1 figure. v2: Less typos in text and less punctuation in
titl
Anomalous Spin Dephasing in (110) GaAs Quantum Wells: Anisotropy and Intersubband Effects
A strong anisotropy of electron spin decoherence is observed in GaAs/(AlGa)As
quantum wells grown on (110) oriented substrate. The spin lifetime of spins
perpendicular to the growth direction is about one order of magnitude shorter
compared to spins along (110). The spin lifetimes of both spin orientations
decrease monotonically above a temperature of 80 and 120 K, respectively. The
decrease is very surprising for spins along (110) direction and cannot be
explained by the usual Dyakonov Perel dephasing mechanism. A novel spin
dephasing mechanism is put forward that is based on scattering of electrons
between different quantum well subbands.Comment: 4 pages, 3 postscript figures, corrected typo
Qubit-Initialisation and Readout with Finite Coherent Amplitudes in Cavity QED
We consider a unitary transfer of an arbitrary state of a two-level atomic
qubit in a cavity to the finite amplitude coherent state cavity field. Such
transfer can be used to either provide an effective readout measurement on the
atom by a subsequent measurement on the light field or as a method for
initializing a fixed atomic state - a so-called "attractor state", studied
previously for the case of an infinitely strong cavity field. We show that with
a suitable adjustment of the coherent amplitude and evolution time the qubit
transfers all its information to the field, attaining a selected state of high
purity irrespectively of the initial state.Comment: 6 pages, 4 figure
(2+1) resonant enhanced multiphoton ionization of H_2 via the E, F^(1)ÎŁ^+_g state
In this paper, we report the results of ab initio calculations of photoelectron angular distributions and vibrational branching ratios for the (2+1) REMPI of H_2 via the E, F^(1)ÎŁ^+_g state, and compare these with the experimental data of Anderson et al. [Chem. Phys. Lett. 105, 22 (1984)]. These results show that the observed nonâFranckâCondon behavior is predominantly due to the R dependence of the transition matrix elements, and to a lesser degree to the energy dependence. This work presents the first molecular REMPI study employing a correlated wave function to describe the Rydbergâvalence mixing in the resonant intermediate state
On the Structure of the Observable Algebra of QCD on the Lattice
The structure of the observable algebra of lattice
QCD in the Hamiltonian approach is investigated. As was shown earlier,
is isomorphic to the tensor product of a gluonic
-subalgebra, built from gauge fields and a hadronic subalgebra
constructed from gauge invariant combinations of quark fields. The gluonic
component is isomorphic to a standard CCR algebra over the group manifold
SU(3). The structure of the hadronic part, as presented in terms of a number of
generators and relations, is studied in detail. It is shown that its
irreducible representations are classified by triality. Using this, it is
proved that the hadronic algebra is isomorphic to the commutant of the triality
operator in the enveloping algebra of the Lie super algebra
(factorized by a certain ideal).Comment: 33 page
- âŠ