8,495 research outputs found
The applicability of MFD thrusters to satellite power systems
The high power self field MPD thruster uses electromagnetic forces rather than electrostatic to accelerate a neutral plasma. The most attractive application of MPD thrusters to satellite power systems is in the area of electric propulsion for a cargo orbit transfer vehicle (COTV). Calculations were performed in order to compare the performance of a COTV using an ion or MPD propulsion system. Results show that the MPD propulsion system gives a shorter trip time with the same power and payload when compared to the ion thruster propulsion system at either value of specific impulse. More important than the trip time benefit may be the advantage a MPD propulsion system provides in system simplicity. Another interesting COTV concept using MPD thrusters is the use of a remote power supply located on the Earth, at GEO, or somewhere in between to transmit power to the COTV in a microwave transmission. The specific impulse at thrust levels of tens of newtons makes a MPD propulsion system a candidate for stationkeeping and attitude control of large space structures such as a SPS
Plume Characterization of a One-Millipound Solid Teflon Pulsed Plasma Thruster, Phase 2
Measurements of the pulsed plasma thruster (PPT) plume upstream mass flux were made in the Molecular Sink (MOLSINK) vacuum facility in order to minimize the plume-tank wall reflected mass flux. Using specially designed collimators on 4 rows of Quartz Crystal Microbalanced (QCMs) mounted on a support extending radially away from the plume axis, measurements were made of the mass flux originating in a thin slice of the PPT primary plume at an arbitrary dip angle with respect to the thruster axis. The measured and analytically corrected mass flux from particles reflected from the MOLSINK walls was substracted from the collimated QCM measurements to improve their accuracy. These data were then analytically summed over dip angle to estimate the total plume backflow upstream of the thruster nozzle. The results indicate that the PPT backflow is of order 10 to the minus 10th power g/square cm/pulse in the region from 38 to 86 cm from the PPT axis in the nozzle exit plane. This flux drops with the square of the radial distance from the PPT axis and is comparable to the backflow of an 8 cm ion thruster, which has performance characteristics similar to those of the PPT
Particle alignments and shape change in Ge and Ge
The structure of the nuclei Ge and Ge is studied
by the shell model on a spherical basis. The calculations with an extended
Hamiltonian in the configuration space
(, , , ) succeed in reproducing
experimental energy levels, moments of inertia and moments in Ge isotopes.
Using the reliable wave functions, this paper investigates particle alignments
and nuclear shapes in Ge and Ge.
It is shown that structural changes in the four sequences of the positive-
and negative-parity yrast states with even and odd are caused by
various types of particle alignments in the orbit.
The nuclear shape is investigated by calculating spectroscopic moments of
the first and second states, and moreover the triaxiality is examined by
the constrained Hatree-Fock method.
The changes of the first band crossing and the nuclear deformation depending
on the neutron number are discussed.Comment: 18 pages, 21 figures; submitted to Phys. Rev.
Measurement-induced localization of relative degrees of freedom
Published versio
Further results on the cross norm criterion for separability
In the present paper the cross norm criterion for separability of density
matrices is studied. In the first part of the paper we determine the value of
the greatest cross norm for Werner states, for isotropic states and for Bell
diagonal states. In the second part we show that the greatest cross norm
criterion induces a novel computable separability criterion for bipartite
systems. This new criterion is a necessary but in general not a sufficient
criterion for separability. It is shown, however, that for all pure states, for
Bell diagonal states, for Werner states in dimension d=2 and for isotropic
states in arbitrary dimensions the new criterion is necessary and sufficient.
Moreover, it is shown that for Werner states in higher dimensions (d greater
than 2), the new criterion is only necessary.Comment: REVTeX, 19 page
Gauge Orbit Types for Theories with Classical Compact Gauge Group
We determine the orbit types of the action of the group of local gauge
transformations on the space of connections in a principal bundle with
structure group O(n), SO(n) or over a closed, simply connected manifold
of dimension 4. Complemented with earlier results on U(n) and SU(n) this
completes the classification of the orbit types for all classical compact gauge
groups over such space-time manifolds. On the way we derive the classification
of principal bundles with structure group SO(n) over these manifolds and the
Howe subgroups of SO(n).Comment: 57 page
The Uniqueness Theorem for Entanglement Measures
We explore and develop the mathematics of the theory of entanglement
measures. After a careful review and analysis of definitions, of preliminary
results, and of connections between conditions on entanglement measures, we
prove a sharpened version of a uniqueness theorem which gives necessary and
sufficient conditions for an entanglement measure to coincide with the reduced
von Neumann entropy on pure states. We also prove several versions of a theorem
on extreme entanglement measures in the case of mixed states. We analyse
properties of the asymptotic regularization of entanglement measures proving,
for example, convexity for the entanglement cost and for the regularized
relative entropy of entanglement.Comment: 22 pages, LaTeX, version accepted by J. Math. Phy
Qubit-portraits of qudit states and quantum correlations
The machinery of qubit-portraits of qudit states, recently presented, is
consider here in more details in order to characterize the presence of quantum
correlations in bipartite qudit states. In the tomographic representation of
quantum mechanics, Bell-like inequalities are interpreted as peculiar
properties of a family of classical joint probability distributions which
describe the quantum state of two qudits. By means of the qubit-portraits
machinery a semigroup of stochastic matrices can be associated to a given
quantum state. The violation of the CHSH inequalities is discussed in this
framework with some examples, we found that quantum correlations in qutrit
isotropic states can be detected by the suggested method while it cannot in the
case of qutrit Werner states.Comment: 12 pages, 4 figure
Mutual first order coherence of phase-locked lasers
We argue that (first-order) coherence is a relative, and not an absolute,
property. It is shown how feedforward or feedback can be employed to make two
(or more) lasers relatively coherent. We also show that after the relative
coherence is established, the two lasers will stay relatively coherent for some
time even if the feedforward or feedback loop has been turned off, enabling,
e.g., demonstration of unconditional quantum teleportation using lasers.Comment: 9 pages, 6 figure
- …