13 research outputs found
Adaptation of Poa alpina to altitude and land use in the Swiss Alps
Current land use and climate change are prompting questions about the ability of plants to adapt to such environmental change. Therefore, we experimentally addressed plant performance and quantitative-genetic diversity of the common Alpine Meadow Grass Poa alpina. We asked how land use and altitude affect the occurrence of P. alpina in the field and whether its common-garden performance suggests adaptation to conditions at plant origin and differences in quantitative genetic diversity among plant origins. Among 216 candidate grassland sites of different land use and altitude from 12 villages in the Swiss Alps, P. alpina occurred preferentially in fertilized and grazed sites and at higher elevations. In a common garden at 1,500m asl, we grew two plants of >600 genotypes representing 78 grassland sites. After 2years, nearly 90% of all plants had reproduced. In agreement with adaptive advantages of vegetative reproduction at higher altitudes, only 23% of reproductive plants from lower altitudes reproduced via vegetative bulbils, but 55% of plants from higher altitudes. In agreement with adaptive advantages of reproduction in grazed sites, allocation to reproductive biomass was higher in plants from grazed grasslands than from mown ones. For 53 grasslands, we also investigated broad-sense heritability H2, which was significant for all studied traits and twice as high for grazed as for mown grasslands. Moreover, possibly associated with their higher landscape diversity, H2 was higher for sites of villages of Romanic cultural tradition than for those of Germanic and Walser traditions. We suggest promoting diverse land use regimes to conserve not only landscape and plant species diversity, but also adaptive genetic differentiation and heritable genetic variatio
Omnipresence of leaf herbivory by invertebrates and leaf infection by fungal pathogens in agriculturally used grasslands of the Swiss Alps, but low plant damage
Agriculturally used grasslands in the Alps are characterised by a trade-off between high fodder production in some and high plant species richness in others. In contrast to plant species richness and production, however, little is known on the relevance of biological interactions between plants, invertebrate herbivores, and fungal pathogens for grasslands in the Alps. At the time when the vegetation was fully developed, but prior to agricultural use, we examined whether leaf damage by herbivory and fungal pathogen infection, and their diversity, are affected by plant functional group, land use, and altitude. Moreover, we studied whether extent and diversity of leaf damage are related to each other, to plant species richness, and to standing crop. We recorded the leaf area damaged by ten types of herbivory and five types of fungal pathogen infection on 12,054 plant leaves of legumes, other forbs, and graminoids collected in 215 grassland parcels in 12 valleys in the Swiss Alps. With 83% of all leaves infested, herbivory and fungal pathogen infection were omnipresent. However, only 2.7% leaf area was damaged by herbivory and 1.2% by fungal pathogens. Damage by herbivory was highest on legumes, and damage by fungal pathogens was highest on graminoids. More leaf damage by herbivory occurred in traditionally mown sites and at lower altitudes, while damage by fungal pathogen infection was independent of land use and altitude. Most types of herbivory were found on legumes and on leaves from fertilised sites, whereas the number of fungal pathogen types was highest on graminoids and in unfertilised sites. Larger standing crop was associated with higher leaf damage and diversity of herbivory types per leaf. Neither damage by herbivory nor by fungal pathogens was correlated with plant species diversity. In more plant species rich parcels, the number of herbivory types was lower at the leaf level, but tended to be higher at the parcel level. Our results highlight the omnipresence of plant-herbivore and plant-pathogen interactions. They suggest that current land use changes from mowing to grazing or to abandonment decrease the diversity of herbivory, and that fertilisation decreases pathogen diversity. As our results did not reveal conservation conflicts between diversities of plants, herbivores, and fungal pathogens, and as the damage from herbivory and pathogens is generally low, we conclude that for protecting the high diversity of plant-herbivore and plant-pathogen interactions a diverse low-intensity land use should be maintaine
Microsatellite Diversity of the Agriculturally Important Alpine Grass Poa alpina in Relation to Land Use and Natural Environment
Background and Aims The Alpine Meadow Grass Poa alpina is common in subalpine and alpine natural sites and agriculturally used land, where it is an important fodder grass. Natural factors and human land use are supposed to have been shaping its genetic diversity for hundreds of years. The species comprises sexually and vegetatively reproducing plants. The aim of this study was to investigate the effects of agricultural land use, environmental factors and the mode of reproduction on the distribution of its microsatellite diversity within and among populations and to analyse whether its genetic diversity is correlated with plant species diversity in grassland parcels. Methods Genetic diversity of P. alpina was assessed with five microsatellite markers for 569 plants originating from 20 natural sites and from 54 grassland parcels of different cultural tradition, land use and altitude in the Swiss Alps. Due to polyploidy and frequent aneuploidy of the species, data analyses were based on the presence of microsatellite bands. Key Results A low but significant differentiation was found in microsatellite bands among natural sites and agriculturally used parcels, while their microsatellite band diversity within populations did not differ. An increased differentiation was found in microsatellite bands with increasing geographic distance among parcels, and a differentiation among grazed and mown parcels, and among sexually and vegetatively reproducing populations. Band richness of sampled plants per village was higher for villages where parcels represented more different land-use types. Within populations, microsatellite band diversity was higher in grazed than in mown parcels. Conclusions The diversity of human land use in the Alps was associated with genetic diversity of P. alpina. Therefore, the ongoing socio-economically motivated land-use changes, which reduce the number of different land-use types, will affect the genetic diversity of P. alpina negativel
A global inventory of mountains for bio-geographical applications
Mountains are hotspots of biodiversity. Yet, evaluating their importance in global biodiversity inventories requires the adoption of a pertinent definition of mountains. Here, we first compare the well-established WCMC and GMBA definitions, which both use geographical information systems. We show that the WCMC approach arrives at twice the global mountain area and much higher human population numbers than the GMBA one, which is explained by the inclusion of (mostly) low latitude hill country below 600 m elevation. We then present an inventory of the world’s mountains based on the GMBA definition. In this inventory, each of the 1003 entries corresponds to a polygon drawn around a mountain or a mountain range and includes the name of the delineated object, the area of mountainous terrain it covers stratified into different bioclimatic belts (all at 2.5′ resolution), and demographic information. Taken together, the 1003 polygons cover 13.8 Mio km2 of mountain terrain, of which 3.3 Mio km2 are in the alpine and nival belts. This corresponds to 83.7% of the global mountain area sensu GMBA, and 94% of the alpine/nival area. The 386 Mio people inhabiting mountainous terrain within polygons represent 75% of the people globally inhabiting mountains sensu GMBA. This inventory offers a robust framework for the integration of mountain biota in regional and larger scale biodiversity assessments, for biogeography, bioclimatology, macroecology, and conservation research, and for the exploration of a multitude of socio-ecological and climate change-related research questions in mountain biota, including the potential pressure on alpine ecosystems
Agricultural land use and biodiversity in the Alps : how cultural tradition and socioeconomically motivated changes are shaping grassland biodiversity in the Swiss Alps
Alpine grasslands are ecosystems with a great diversity of plant species. However, little is known about other levels of biodiversity, such as landscape diversity, diversity of biological interactions of plants with herbivores or fungal pathogens, and genetic diversity. We therefore explored natural and anthropogenic determinants of grassland biodiversity at several levels of biological integration, from the genetic to the landscape level in the Swiss Alps. Differences between cultural traditions (Romanic, Germanic, and Walser) turned out to still affect land use diversity and thus landscape diversity. Increasing land use diversity, in turn, increased plant species diversity per village. However, recent land use changes have reduced this diversity. Within grassland parcels, plant species diversity was higher on unfertilized mown grasslands than on fertilized or grazed ones. Most individual plants were affected by herbivores and fungal leaf pathogens, reflecting that parcels harbored a great diversity of herbivores and pathogens. However, as plant damage by herbivores and pathogens was not severe, conserving these biological interactions among plants is hardly compromising agricultural goals. A common-garden experiment revealed genetic differentiation of the important fodder grass Poa alpina between mown and grazed sites, suggesting adaptation. Per-village genetic diversity of Poa alpina was greater in villages with higher land use diversity, analogous to the higher plant species diversity there. Overall, landscape diversity and biodiversity within grassland parcels are currently declining. As this contradicts the intention of Swiss law and international agreements, financial incentives need to be re-allocated and should focus on promoting high biodiversity at the local and the landscape level. At the same time, this will benefit landscape attractiveness for tourists and help preserve a precious cultural heritage in the Swiss Alps
Microsatellite Diversity of the Agriculturally Important Alpine Grass Poa alpina in Relation to Land Use and Natural Environment
Background and Aims: The Alpine Meadow Grass Poa alpina is common in subalpine and alpine natural sites and agriculturally used land, where it is an important fodder grass. Natural factors and human land use are supposed to have been shaping its genetic diversity for hundreds of years. The species comprises sexually and vegetatively reproducing plants. The aim of this study was to investigate the effects of agricultural land use, environmental factors and the mode of reproduction on the distribution of its microsatellite diversity within and among populations and to analyse whether its genetic diversity is correlated with plant species diversity in grassland parcels.
Methods: Genetic diversity of P. alpina was assessed with five microsatellite markers for 569 plants originating from 20 natural sites and from 54 grassland parcels of different cultural tradition, land use and altitude in the Swiss Alps. Due to polyploidy and frequent aneuploidy of the species, data analyses were based on the presence of microsatellite bands.
Key Results: A low but significant differentiation was found in microsatellite bands among natural sites and agriculturally used parcels, while their microsatellite band diversity within populations did not differ. An increased differentiation was found in microsatellite bands with increasing geographic distance among parcels, and a differentiation among grazed and mown parcels, and among sexually and vegetatively reproducing populations. Band richness of sampled plants per village was higher for villages where parcels represented more different land-use types. Within populations, microsatellite band diversity was higher in grazed than in mown parcels.
Conclusions: The diversity of human land use in the Alps was associated with genetic diversity of P. alpina. Therefore, the ongoing socio-economically motivated land-use changes, which reduce the number of different land-use types, will affect the genetic diversity of P. alpina negatively
Landnutzung und biologische Vielfalt in den Alpen : Fakten, Perspektiven, Empfehlungen : thematische Synthese zum Forschungsschwerpunkt II "Land- und Forstwirtschaft im alpinen Lebensraum" : Nationales Forschungsprogramm 48 "Landschaften und Lebensräume der Alpen" des Schweizerischen Nationalfonds : [Synthesebericht NFP 48]
Biodiversität - Landwirtschaft - Wald Alps, biodiversity, land use, landscape, cultural tradition
New Indicator Values for Central Caucasus Flora
In this study we have aimed to extend the concept of indicator values of Ellenberg (1974) and Landolt (1977) for vascular plants of the Caucaus (Sakhokia and Khutsishvili 1975a, b, c), taking account those species which also occur in the Alps (more than 400 species). The resulting Nakhutsrishvili Indicator Values for the Caucasus (see Annex) were compared with those of Elias Landolt for the Alps (Landolt 1977). The results show a high overlap of both sets of indicator values, indicating both, a high overlap of the ecological niche of the species of the Alps and the Caucasus, and also an agreement of both experts for many species and indicator value classes (30–50% congruence). The results show that an extension of Landolt indicator values to the Caucasus is possible, and that the Nakhutsrishvili Indicator Value dataset can now be used for vegetation analysis of the Caucasus