23 research outputs found
Noether symmetry for non-minimally coupled fermion fields
A cosmological model where a fermion field is non-minimally coupled with the
gravitational field is studied. By applying Noether symmetry the possible
functions for the potential density of the fermion field and for the coupling
are determined. Cosmological solutions are found showing that the non-minimally
coupled fermion field behaves as an inflaton describing an accelerated
inflationary scenario, whereas the minimally coupled fermion field describes a
decelerated period being identified as dark matter.Comment: Revised version accepted for publication in Classical and Quantum
Gravit
Constraining non-minimally coupled tachyon fields by Noether symmetry
A model for a spatially flat homogeneous and isotropic Universe whose
gravitational sources are a pressureless matter field and a tachyon field
non-minimally coupled to the gravitational field is analyzed. Noether symmetry
is used to find the expressions for the potential density and for the coupling
function, and it is shown that both must be exponential functions of the
tachyon field. Two cosmological solutions are investigated: (i) for the early
Universe whose only source of the gravitational field is a non-minimally
coupled tachyon field which behaves as an inflaton and leads to an exponential
accelerated expansion and (ii) for the late Universe whose gravitational
sources are a pressureless matter field and a non-minimally coupled tachyon
field which plays the role of dark energy and is the responsible of the
decelerated-accelerated transition period.Comment: 11 pages, 5 figures. Version accepted for publication in Classical
and Quantum Gravit
Dark Sector from Interacting Canonical and Non-Canonical Scalar Fields
In this work it is investigated general models with interactions between two
canonical scalar fields and between one non-canonical (tachyon-type) and one
canonical scalar field. The potentials and couplings to the gravity are
selected through the Noether symmetry approach. These general models are
employed to describe interactions between dark energy and dark matter, with the
fields being constrained by the astronomical data. The cosmological solutions
of some cases are compared with the observed evolution of the late Universe.Comment: 20 pages, 13 figures, correction of misprints in eqs. (4), (5), (43),
(44