5 research outputs found

    Short-term feeding of a ketogenic diet induces more severe hepatic insulin resistance than an obesogenic high-fat diet

    Get PDF
    KEY POINTS A ketogenic diet is known to lead to weight loss and is considered metabolically healthy; however there are conflicting reports on its effect on hepatic insulin sensitivity. KD fed animals appear metabolically healthy in the fasted state after 3 days of dietary challenge, whereas obesogenic high-fat diet (HFD) fed animals show elevated insulin levels. A glucose challenge reveals that both KD and HFD fed animals are glucose intolerant. Glucose intolerance correlates with increased lipid oxidation and lower respiratory exchange ratio (RER); however, all animals respond to glucose injection with an increase in RER. Hyperinsulinaemic-euglycaemic clamps with double tracer show that the effect of KD is a result of hepatic insulin resistance and increased glucose output but not impaired glucose clearance or tissue glucose uptake in other tissues. ABSTRACT Despite being a relevant healthcare issue and heavily investigated, the aetiology of type 2 diabetes (T2D) is still incompletely understood. It is well established that increased endogenous glucose production (EGP) leads to a progressive increase in glucose levels, causing insulin resistance and eventual loss of glucose homeostasis. The consumption of high carbohydrate, high-fat, western style diet (HFD) is linked to the development of T2D and obesity, whereas the consumption of a low carbohydrate, high-fat, ketogenic diet (KD) is considered healthy. However, several days of carbohydrate restriction are known to cause selective hepatic insulin resistance. In the present study, we compare the effects of short-term HFD and KD feeding on glucose homeostasis in mice. We show that, even though KD fed animals appear to be healthy in the fasted state, they exhibit decreased glucose tolerance to a greater extent than HFD fed animals. Furthermore, we show that this effect originates from blunted suppression of hepatic glucose production by insulin, rather than impaired glucose clearance and tissue glucose uptake. These data suggest that the early effects of HFD consumption on EGP may be part of a normal physiological response to increased lipid intake and oxidation, and that systemic insulin resistance results from the addition of dietary glucose to EGP-derived glucose

    Short-term feeding of a ketogenic diet induces more severe hepatic insulin resistance than an obesogenic high-fat diet

    No full text
    Despite being a relevant healthcare issue and heavily investigated, the aetiology of type 2 diabetes (T2D) is still incompletely understood. It is well established that increased endogenous glucose production (EGP) leads to a progressive increase in glucose levels, causing insulin resistance and eventual loss of glucose homeostasis. The consumption of high carbohydrate, high‐fat, western style diet (HFD) is linked to the development of T2D and obesity, whereas the consumption of a low carbohydrate, high‐fat, ketogenic diet (KD) is considered healthy. However, several days of carbohydrate restriction are known to cause selective hepatic insulin resistance. In the present study, we compare the effects of short‐term HFD and KD feeding on glucose homeostasis in mice. We show that, even though KD fed animals appear to be healthy in the fasted state, they exhibit decreased glucose tolerance to a greater extent than HFD fed animals. Furthermore, we show that this effect originates from blunted suppression of hepatic glucose production by insulin, rather than impaired glucose clearance and tissue glucose uptake. These data suggest that the early effects of HFD consumption on EGP may be part of a normal physiological response to increased lipid intake and oxidation, and that systemic insulin resistance results from the addition of dietary glucose to EGP‐derived glucose.ISSN:0022-3751ISSN:1469-779

    TUSC5 regulates insulin-mediated adipose tissue glucose uptake by modulation of GLUT4 recycling

    No full text
    Objective Failure to properly dispose of glucose in response to insulin is a serious health problem, occurring during obesity and is associated with type 2 diabetes development. Insulin-stimulated glucose uptake is facilitated by the translocation and plasma membrane fusion of vesicles containing glucose transporter 4 (GLUT4), the rate-limiting step of post-prandial glucose disposal. Methods We analyzed the role of Tusc5 in the regulation of insulin-stimulated Glut4-mediated glucose uptake in vitro and in vivo. Furthermore, we measured Tusc5 expression in two patient cohorts. Results Herein, we report that TUSC5 controls insulin-stimulated glucose uptake in adipocytes, in vitro and in vivo. TUSC5 facilitates the proper recycling of GLUT4 and other key trafficking proteins during prolonged insulin stimulation, thereby enabling proper protein localization and complete vesicle formation, processes that ultimately enable insulin-stimulated glucose uptake. Tusc5 knockout mice exhibit impaired glucose disposal and TUSC5 expression is predictive of glucose tolerance in obese individuals, independent of body weight. Furthermore, we show that TUSC5 is a PPARγ target and in its absence the anti-diabetic effects of TZDs are significantly blunted. Conclusions Collectively, these findings establish TUSC5 as an adipose tissue-specific protein that enables proper protein recycling, linking the ubiquitous vesicle traffic machinery with tissue-specific insulin-mediated glucose uptake into adipose tissue and the maintenance of a healthy metabolic phenotype in mice and humans

    The ubiquitin ligase Uhrf2 is a master regulator of cholesterol biosynthesis and is essential for liver regeneration

    No full text
    Fibroblast growth factors (FGFs) are key regulators of the remarkable regenerative capacity of the liver. Mice lacking FGF receptors 1 and 2 (Fgfr1 and Fgfr2) in hepatocytes are hypersensitive to cytotoxic injury during liver regeneration. Using these mice as a model for impaired liver regeneration, we identified a critical role for the ubiquitin ligase Uhrf2 in protecting hepatocytes from bile acid accumulation during liver regeneration. During regeneration after partial hepatectomy, Uhrf2 expression increased in an FGFR-dependent manner, and Uhrf2 was more abundant in the nuclei of liver cells in control mice compared with FGFR-deficient mice. Hepatocyte-specific Uhrf2 knockout or nanoparticle-mediated Uhrf2 knockdown caused extensive liver necrosis and impaired hepatocyte proliferation after partial hepatectomy, resulting in liver failure. In cultured hepatocytes, Uhrf2 interacted with several chromatin remodeling proteins and suppressed the expression of cholesterol biosynthesis genes. In vivo, the loss of Uhrf2 resulted in cholesterol and bile acid accumulation in the liver during regeneration. Treatment with a bile acid scavenger rescued the necrotic phenotype, hepatocyte proliferation, and the regenerative capacity of the liver in Uhrf2-deficient mice subjected to partial hepatectomy. Our results identify Uhrf2 as a key target of FGF signaling in hepatocytes and its essential function in liver regeneration and highlight the importance of epigenetic metabolic regulation in this process.ISSN:1945-0877ISSN:1937-9145ISSN:1525-888
    corecore