25 research outputs found

    Перевод паровой котельной на водогрейный режим г. Кедровый Томской области

    Get PDF
    Выпускная квалификационная работа 172 страницы, 17 табл., 8 рисунков, 21 источник литературы, 8 листов графического материала. КОТЕЛЬНАЯ ПРОИЗВОДСТВЕННО - ОТОПИТЕЛЬНАЯ, КОТЕЛ ПАРОВОЙ, ВОДОГРЕЙНЫЙ РЕЖИМ, ТЕПЛОВОЙ, ГИДРАВЛИЧЕСКИЙ, АЭРОДИНАМИЧЕСКИЙ РАСЧЕТ, ЭКОНОМИЧЕСКИЙ ЭФФЕКТ. Целью работы является перевод котла ДКВр-10-13 с парового режима работы в водогрейный.Final qualifying work of 172 pages, 17 tab., 8 figures, 21 source of literature, 8 sheets of graphic material. INDUSTRIAL BOILER - Heating, steam boiler, hot-water boilers, thermal, hydraulic, aerodynamic calculations, the economic effect. The aim is to transfer the boiler DKVr-10-13 with steam mode to hot water

    Prolonged fibroblast growth factor 19 response in patients with primary sclerosing cholangitis after an oral chenodeoxycholic acid challenge

    Get PDF
    Bile salts likely contribute to liver injury in patients with primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC). Fibroblast growth factor 19 (FGF19) is a bile salt-induced enterokine with hepatoprotective potential as it suppresses de novo bile salt synthesis. Here, we evaluated the bile salt receptor FXR/FGF19 gut-liver axis in PSC and PBC patients. Fasted patients with PSC (n = 12) and PBC (n = 10), and healthy controls (HC; n = 10) were orally challenged with the natural FXR agonist chenodeoxycholic acid (CDCA 15 mg/kg). Blood was sampled hourly until 8 h afterwards. Serum FGF19 and bile salt excursions were determined. Serum levels of 7 alpha-hydroxy-4-cholesten-3-one (C4), reflecting bile salt synthesis, were measured as a biomarker of FGF19 response. Baseline serum FGF19 levels were comparable between groups, while fasted bile salt levels in PSC patients were elevated. Upon CDCA challenge, HC and PBC patients showed a serum FGF19 peak after 4 h followed by a decline. PSC patients showed a prolonged and elevated serum FGF19 response up to 8 h, combined with a sustained serum elevation of CDCA and other bile salts. In general, C4 levels declined following FGF19 elevation. In PSC patients with less favorable prognosis, baseline C4 levels were drastically suppressed and did not further decline. Following an oral CDCA challenge, PSC patients showed an impaired clearance of CDCA and a prolonged serum FGF19 response. FXR agonist therapy in PSC could cause prolonged exposure to elevated levels of FGF19, and we propose careful monitoring for detrimental side effects in patient studies

    Intestinal Farnesoid X Receptor Activation by Pharmacologic Inhibition of the Organic Solute Transporter α-β

    No full text
    The organic solute transporter α-β (OSTα-OSTβ) mainly facilitates transport of bile acids across the basolateral membrane of ileal enterocytes. Therefore, inhibition of OSTα-OSTβ might have similar beneficial metabolic effects as intestine-specific agonists of the major nuclear receptor for bile acids, the farnesoid X receptor (FXR). However, no OSTα-OSTβ inhibitors have yet been identified. Methods: Here, we developed a screen to identify specific inhibitors of OSTα-OSTβ using a genetically encoded Förster Resonance Energy Transfer (FRET)–bile acid sensor that enables rapid visualization of bile acid efflux in living cells. Results: As proof of concept, we screened 1280 Food and Drug Administration–approved drugs of the Prestwick chemical library. Clofazimine was the most specific hit for OSTα-OSTβ and reduced transcellular transport of taurocholate across Madin–Darby canine kidney epithelial cell monolayers expressing apical sodium bile acid transporter and OSTα-OSTβ in a dose-dependent manner. Moreover, pharmacologic inhibition of OSTα-OSTβ also moderately increased intracellular taurocholate levels and increased activation of intestinal FXR target genes. Oral administration of clofazimine in mice (transiently) increased intestinal FXR target gene expression, confirming OSTα-OSTβ inhibition in vivo. Conclusions: This study identifies clofazimine as an inhibitor of OSTα-OSTβ in vitro and in vivo, validates OSTα-OSTβ as a drug target to enhance intestinal bile acid signaling, and confirmed the applicability of the Förster Resonance Energy Transfer–bile acid sensor to screen for inhibitors of bile acid efflux pathways

    Adeno-associated virus vector serotypes mediate sustained correction of bilirubin UDP glucuronosyltransferase deficiency in rats

    No full text
    Crigler-Najjar (CN) patients have no bilirubin UDP glucuronosyltransferase (UGT1A1) activity and suffer brain damage because of bilirubin toxicity. Vectors based on adeno-associated virus (AAV) serotype 2 transduce liver cells with relatively low efficiency. Recently, AAV serotypes 1, 6, and 8 have been shown to be more efficient for liver cell transduction. We compared AAV serotypes 1, 2, 6, and 8 for correction of UGT1A1 deficiency in the Gunn rat model of CN disease. Adult Gunn rats were injected with CMV-UGT1A1 AAV vectors. Serum bilirubin was decreased over the first year by 64% for AAV1, 16% for AAV2, 25% for AAV6, and 35% for AAV8. Antibodies to UGT1A1 were detected after injection of all AAV serotypes. An AAV1 UGT1A1 vector with the liver-specific albumin promoter corrected serum bilirubin levels but did not induce UGT1A1 antibodies. Two years after injection of AAV vectors all animals had large lipid deposits in the liver. These lipid deposits were not seen in age-matched control animals. AAV1 vectors are promising candidates for CN gene therapy because they can mediate a reduction in serum bilirubin levels in Gunn rats that would be therapeutic in human

    Stable Overexpression of the Constitutive Androstane Receptor Reduces the Requirement for Culture with Dimethyl Sulfoxide for High Drug Metabolism in HepaRG Cells

    No full text
    Dimethylsulfoxide (DMSO) induces cellular differentiation and expression of drug metabolic enzymes in the human liver cell line HepaRG; however, DMSO also induces cell death and interferes with cellular activities. The aim of this study was to examine whether overexpression of the constitutive androstane receptor (CAR, NR1I3), the nuclear receptor controlling various drug metabolism genes, would sufficiently promote differentiation and drug metabolism in HepaRG cells, optionally without using DMSO. By stable lentiviral overexpression of CAR, HepaRG cultures were less affected by DMSO in total protein content and obtained increased resistance to acetaminophen-and amiodarone-induced cell death. Transcript levels of CAR target genes were significantly increased in HepaRG-CAR cultures without DMSO, resulting in increased activities of cytochrome P450 (P450) enzymes and bilirubin conjugation to levels equal or surpassing those of HepaRG cells cultured with DMSO. Unexpectedly, CAR overexpression also increased the activities of non-CAR target P450s, as well as albumin production. In combination with DMSO treatment, CAR overexpression further increased transcript levels and activities of CAR targets. Induction of CYP1A2 and CYP2B6 remained unchanged, whereas CYP3A4 was reduced. Moreover, the metabolism of low-clearance compounds warfarin and prednisolone was increased. In conclusion, CAR overexpression creates a more physiologically relevant environment for studies on hepatic (drug) metabolism and differentiation in HepaRG cells without the utilization of DMSO. DMSO still may be applied to accomplish higher drug metabolism, required for sensitive assays, such as lowclearance studies and identification of (rare) metabolites, whereas reduced total protein content after DMSO culture is diminished by CAR overexpressio

    ATP8B1 requires an accessory protein for endoplasmic reticulum exit and plasma membrane lipid flippase activity

    No full text
    Mutations in ATP8B1 cause progressive familial intrahepatic cholestasis type 1 and benign recurrent intrahepatic cholestasis type 1. Previously, we have shown in mice that Atp8b1 deficiency leads to enhanced biliary excretion of phosphatidylserine, and we hypothesized that ATP8B1 is a flippase for phosphatidylserine. However, direct evidence for this function is still lacking. In Saccharomyces cerevisiae, members of the Cdc50p/Lem3p family are essential for proper function of the ATP8B1 homologs. We have studied the role of two human members of this family, CDC50A and CDC50B, in the routing and activity of ATP8B1. When only ATP8B1 was expressed in Chinese hamster ovary cells, the protein localized to the endoplasmic reticulum. Coexpression with CDC50 proteins resulted in relocalization of ATP8B1 from the endoplasmic reticulum to the plasma membrane. Only when ATP8B1 was coexpressed with CDC50 proteins was a 250%-500% increase in the translocation of fluorescently labeled phosphatidylserine observed. Importantly, natural phosphatidylserine exposure in the outer leaflet of the plasma membrane was reduced by 17%-25% in cells coexpressing ATP8B1 and CDC50 proteins in comparison with cells expressing ATP8B1 alone. The coexpression of ATP8B1 and CDC50A in WIF-B9 cells resulted in colocalization of both proteins in the canalicular membrane. Conclusion: Our data indicate that CDC50 proteins are pivotal factors in the trafficking of ATP8B1 to the plasma membrane and thus may be essential determinants of ATP8B1-related disease. In the plasma membrane, ATP8B1 functions as a flippase for phosphatidylserine. Finally, CDC50A may be the potential beta-subunit or chaperone for ATP8B1 in hepatocyte
    corecore