20 research outputs found

    In vitro measurement of temperature changes during implantation of cemented glenoid components

    Get PDF
    Background and purpose It is unclear whether the increase in temperature during cement curing may cause osteonecrosis, leading to loosening of the glenoid component in shoulder arthroplasty. We therefore analyzed the temperature during implantation of cemented glenoid implants

    Titanium Acetabular Component Deformation under Cyclic Loading.

    Get PDF
    Acetabular cup deformation may affect liner/cup congruency, clearance and/or osseointegration. It is unclear, whether deformation of the acetabular components occurs during load and to what extent. To evaluate this, revision multi-hole cups were implanted into six cadaver hemipelvises in two scenarios: without acetabular defect (ND); with a large acetabular defect (LD) that was treated with an augment. In the LD scenario, the cup and augment were attached to the bone and each other with screws. Subsequently, the implanted hemipelvises were loaded under a physiologic partial-weight-bearing modality. The deformation of the acetabular components was determined using a best-fit algorithm. The statistical evaluation involved repeated-measures ANOVA. The mean elastic distension of the ND cup was 292.9 µm (SD 12.2 µm); in the LD scenario, 43.7 µm (SD 11.2 µm); the mean maximal augment distension was 79.6 µm (SD 21.6 µm). A significant difference between the maximal distension of the cups in both scenarios was noted (F(1, 10) = 11.404; p = 0.007). No significant difference was noted between the compression of the ND and LD cups, nor between LD cups and LD augments. The LD cup displayed significantly lower elastic distension than the ND cup, most likely due to increased stiffness from the affixed augment and screw fixation

    Comparison of the Primary Stability of Porous Tantalum and Titanium Acetabular Revision Constructs.

    Get PDF
    Adequate primary stability of the acetabular revision construct is necessary for long-term implant survival. The difference in primary stability between tantalum and titanium components is unclear. Six composite hemipelvises with an acetabular defect were implanted with a tantalum augment and cup, using cement fixation between cup and augment. Relative motion was measured at cup/bone, cup/augment and bone/augment interfaces at three load levels; the results were compared to the relative motion measured at the same interfaces of a titanium cup/augment construct of identical dimensions, also implanted into composite bone. The implants showed little relative motion at all load levels between the augment and cup. At the bone/augment and bone/cup interfaces the titanium implants showed less relative motion than tantalum at 30% load (p < 0.001), but more relative motion at 50% (p = n.s.) and 100% (p < 0001) load. The load did not have a significant effect at the augment/cup interface (p = 0.086); it did have a significant effect on relative motion of both implant materials at bone/cup and bone/augment interfaces (p < 0.001). All interfaces of both constructs displayed relative motion that should permit osseointegration. Tantalum, however, may provide a greater degree of primary stability at higher loads than titanium. The clinical implication is yet to be seen

    Pulsatile Lavage Systems with High Impact Pressure and High Flow Produce Cleaner Cancellous Bone Prior to Cementation in Cemented Arthroplasty

    No full text
    In cemented joint arthroplasty, state-of-the-art cementing techniques include high-pressure pulsatile saline lavage prior to cementation. Even with its outstanding importance in cementation, there are surprisingly few studies regarding the physical parameters that define pulsatile lavage systems. To investigate the parameters of impact pressure, flow rate, frequency and the cleaning effect in cancellous bone, we established a standardized laboratory model. Standardized fat-filled carbon foam specimens representing human cancellous bone were cleaned with three different high-pressure pulsatile lavage systems. Via CT scans before and after cleaning, the cleaning effect was evaluated. All systems showed a cleaning depth of at least 3.0 mm and therefore can be generally recommended to clean cancellous bone in cemented joint arthroplasty. When comparing the three lavage systems, the study showed significant differences regarding cleaning depths and volume, with one system being superior to its peer systems. Regarding the physical parameters, high impact pressure in combination with high flow rate and longer distance to the flushed object seems to be the best combination to improve the cleaning of cancellous bone and therefore increase the chances of a deeper cement penetration that is required in cemented joint arthroplasty. In summary, this study provides the first standardized comparison of different lavage systems and thus gives initial guidance on how to optimally prepare cancellous bone for cemented joint arthroplasty

    Treatment of Severe Bone Defects During Revision Total Knee Arthroplasty with Structural Allografts and Porous Metal Cones:A Systematic Review

    Get PDF
    AbstractAseptic loosening and focal osteolysis are the most common reasons for knee arthroplasty failure. The best treatment remains unclear. We reviewed the literature on the treatment of revision knee arthroplasty using bony structural allografts (476 cases) and porous metal cones (223 cases) to determine if a difference in the revision failure rates was discernable. The failure rates were compared using a logistic regression model with adjustment for discrepancies in FU time and number of grafts used (femoral, tibial, or both). In this analysis, the porous implant shows a significantly decreased loosening rate in AORI 2 and 3 defects. The overall failure rate was also substantially lower in the porous metal group than the structural allograft group; little difference in the infection rates was noted

    Three dimensional gait analysis in patients with symptomatic component mal-rotation after total knee arthroplasty

    Full text link
    PURPOSE: Purpose of the present cohort study was the determination of lower body function and rotation in patients with symptomatic component mal-rotation after total knee arthroplasty using instrumented 3D gait analysis. METHODS: A consecutive series of 12 patients (61.3 years ± 11.4 years) were included suffering under remaining pain or limited range of motion at least six months after total knee arthroplasty. A CT-scan according to the protocol of Berger et al. and instrumented 3D gait analysis were carried out including clinical examination, videotaping, and kinematic analysis using a Plug-in Gait model. Outcome variables were temporospatial parameters as well as kinematics in sagittal and transversal plane. Data for reference group were collected retrospectively and matched by age and gender. RESULTS: Temporospatial parameters of the study group showed decreased velocity, cadence, and step length as well as increased step time. Single limb support was reduced for the affected limb. In sagittal plane, maximum knee flexion during swing phase was reduced for the replaced knee joint. In transverse plane, there was hardly any difference between affected and non-affected limb. Compared to the reference group, both limbs show significant increased internal ankle rotation and external hip rotation. There were significant strong linear correlations between ankle rotation and hip rotation as well as ankle rotation and radiological tibial mal-rotation. CONCLUSIONS: Patients with symptomatic component mal-rotation after total knee arthroplasty showed typically functional deficits. The affected and non-affected limb showed significant increased internal ankle rotation and external hip rotation, while only the affected, replaced knee showed reduced internal knee rotation. Identification of rotational abnormalities of hip and ankle joints seems to be mandatory in TKA to identify the patient group with external hip rotation, internal ankle rotation, and an elevated risk for symptomatic rotational TKA component mal-alignment

    Retrieval Analysis of Modern Knee Tumor Megaendoprosthesis Shows Considerable Volumetric Metal Wear Generated at the Rotating Hinge

    No full text
    Frequently occurring damage, as well as elevated blood metal ion levels, are reported in relation to a tumor and revision system for total knee arthroplasty (TKA), which applies a rotating hinge coupling with a metal-on-metal (MoM) articulation. As the patient collective for this specific system is small, there is no data on wear generated from the couplings. In this study, wear volume and influencing parameters were investigated at 44 retrieved TKAs with MoM couplings. A scoring system rating frequently occurring abrasive wear between 0 (no wear) and 3 (distinct wear) was established. The wear score was correlated to time in vivo, bone resection length, patient weight and polyethylene inlay damage. Volumetric wear was estimated applying coordinate measurements. An elevated wear score of two or higher was found in 43% of cases. The mean wear rate accounted to 7.8 mm3/year. The main influencing coefficient for the extent of wear is time in vivo. We found a tendency for higher wear scores with higher inlay degradation scores. Patient weight and bone resection length did not impact coupling wear. Assessment of wear damage by a semi-quantitative scoring system has proven to be a reliable option for non-destructive coupling evaluation. The generated wear volume is high
    corecore